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Abstract

To exploit large deviation approximations for allocation and occupancy
problems one must solve a deterministic optimal control problem (or equiv-
alently, a calculus of variations problem). As this paper demonstrates, and in
sharp contrast to the great majority of large deviation problems for processes
with state dependence, for allocation problems one can construct more-or-less
explicit solutions. Two classes of allocation problems are studied. The first
class considers objects of a single type with a parameterized family of placement
probabilities. The second class considers only equally likely placement proba-
bilities, but allows for more than one type of object. In both cases, we identify
the Hamilton-Jacobi-Bellman equation whose solution characterizes the mini-
mal cost, explicitly construct solutions, and identify the minimizing trajectories.
The explicit construction is possible because of the very tractable properties of
the relative entropy function with respect to optimization.

1 Introduction

Allocation and occupancy problems are concerned with the random placement of
objects into containers. The objects (usually referred to as balls or tokens) can be
of a single type or many, in which case they are often distinguished by “color.” The
containers are variously called urns or cells, and have many interpretations, such as
physical partitions (photo-electric receptors in a grid) and temporal partitions (the
days of the year).

There are also many rules for how a given ball may be assigned to a given
cell. The simplest such rule, in the context of a single color, uses what are called
Maxwell-Boltzmann (MB) statistics. Here, each cell is equally likely to receive each
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ball. Other rules consider the balls as being placed sequentially, and the likelihood
that a given ball is placed in a given cell depends on the current contents of that
cell (relative to the contents of all other cells). Examples in this category are Bose-
Einstein statistics (BE), for which a cell that already contains balls is more likely to
receive the next ball, and Fermi-Dirac statistics (FD), where the reverse holds. The
precise definitions of BE and FD will be given below.

A key random variable associated with an allocation is the empirical measure.
After all (or some) of the balls have been placed, one can form the (random) proba-
bility measure (η0, η1, . . .) on {0, 1, . . .}, with η0 equal to the fraction of cells that are
empty, η1 the fraction that contain 1, etc. For example, one could be particularly
concerned that at least 90% of the cells are nonempty after the random allocation. In
this case one is interested in the distribution of the first component of the empirical
measure, and in particular P{η0 ≤ 0.1}.

While methods from combinatorial probability provide exact formulas for certain
classes of allocation problems, they do not apply universally, nor are they always
of great practical utility—see the discussion in [2] on this point. Hence one turns
to approximations. The simplest approximation is a law of large numbers (LLN)
limit, under which the number of cells and number of balls placed into the cells both
tend to ∞ with some fixed ratio. If η is indexed by the number of cells n, then the
LLN limit identifies the (deterministic) probability distribution that ηn tends to as
n→∞. This identifies the “typical” behavior of the allocation scheme for large n.
The limit can often be identified as the solution to a system of ordinary differential
equations (ODEs) at time t (and for an appropriate initial condition), where t is
limiting ratio of the number of balls to the number of cells, i.e., the mean number
of balls per cell.

If in contrast one is concerned with probabilities of atypical behavior, then one
considers large deviation asymptotics. For example, if it is usual that 50% of the cells
are empty when n is large, then under some technical assumptions large deviation
asymptotics assert that − 1n logP{η0 ≤ 0.1} tends to some constant c > 0, thus
identifying the exponential rate of decay of the probability. The parameter c is
usually identified as the solution of a calculus of variations problem, and using the
well known relation between problems in calculus of variations and Hamilton-Jacobi
equations, c can also be characterized as the value (at a particular point) of the
solution to a nonlinear partial differential equation (PDE).

The explicit identification of c is in general a daunting task. Whilst there are
a small number of cases for which analytic expressions are available, in most cases
one must attempt numerical approximation, and so one is limited to only low di-
mensional problems (i.e., in our setting to the first few components of the empirical
distribution). Even putting aside the restriction of numerical methods to low di-
mensions, one would prefer analytic expressions for c since they have many other
uses. Beyond simply identifying the rate of decay, analytic expressions for c can be
used

• to characterize the most likely way that a rare event will occur,
• to construct efficient Monte Carlo schemes (known as importance sampling
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schemes) for non-asymptotic approximations, and

• in statistical estimation and model inference for occupancy models.
The purpose of the present paper is to show that explicit solutions can be ob-

tained for the PDEs that are associated with a wide variety of allocation problems,
and introduce techniques that can be applied to even broader classes of problems.
As remarked previously, explicit solutions are not common. Among the classes of
nonlinear, first order PDE with explicit solutions (in general dimension) are those
associated with the linear quadratic regulator and those linked to the Hopf-Lax for-
mula. Both these examples exploit some significant underlying simplification. In
the first example it is the fact that the value function for the control problem is
expected to be quadratic in the spatial variable, and in the second example it is the
independence of the running cost from the state variable. The optimization prob-
lems related to allocation problems are qualitatively quite different from either of
these, as can be seen from both the form of the value functions and the structure of
the minimizing trajectories. There is significant state dependence, and no a priori
obvious form for the value function. In the setting of allocation problems, it seems
that the attractive properties of the relative entropy function are largely responsible
for the existence of explicit solutions. It is these properties which allow for conve-
nient calculation and representation of the various derivatives in terms of Lagrange
multipliers, the key ingedient in the proof.

In the next section we analyze the single color model. After introducing the
general model and formally reviewing the large deviation context, we discuss a formal
and heuristic derivation of the explicit solution. The associated Hamilton-Jacobi-
Bellman (HJB) equation is then introduced, and a solution is proposed in the form of
a finite dimensional minimization problem that can be easily and efficiently solved
using Lagrange multiplier techniques. The value of the minimization problem is
shown to be smooth for an appropriate class of terminal costs, its derivatives are
characterized via multipliers, and the HJB equation is shown to hold. The section
concludes with the identification of the minimizing trajectories. The third and final
section repeats these steps for a model with different colors.

2 Allocation Models with Differing Assignment Proba-
bilities

2.1 Probabilistic Background and the Variational Problem

In this section, we formulate a general single color occupancy problem. After de-
scribing the model, we outline the relevant large deviation properties on path space
and the related variational problems.

In the occupancy problem considered here cells are distinguished according to
the number of balls contained therein. The full collection of models will be indexed
by a parameter a. This parameter takes values in the set (0,∞]∪ {−1,−2, . . .}, and
its interpretation is as follows. Suppose that a ball is about to be thrown, and that
any two cells (labeled say A and B) are selected. An cell is said to be of category i
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if it contains i balls. Suppose that cell A is of category i, while B is of category j.
Then the probability that the ball is thrown into cell A, conditioned on the state of
all the cells and that the ball is thrown into either cell A or B, is

a+ i

(a+ i) + (a+ j)
.

When a = ∞ we interpret this to mean that the two cells are equally likely. Also,
when a < 0 we use this ratio to define the probabilities only when 0 ≤ i ∨ j ≤
−a and i < −a or j < −a, so the formula gives a well defined probability. The
probability that a ball is placed in an cell of category −a is 0. Thus under this model,
cells can only be of category 0, 1, . . . ,−a, and we only throw balls into categories
0, 1, . . . ,−a− 1.

When a ∈ (0,∞) cells that already contain balls are more likely to receive the
next ball. When a < 0 the opposite is true. The cases a = 1, a = ∞, a ∈
−N correspond to what were called Bose-Einstein statistics, Maxwell-Boltzmann
statistics, and Fermi-Dirac statistics, respectively, in the Introduction.

Suppose that before we throw a ball there are already tn balls in all the cells,
and that the occupancy state is (x0, x1, . . . xI+). Here xi, i = 0, 1, . . . , I denotes the
fraction of cells that contain i balls, and xI+ denotes the fraction containing more
than I balls. Throughout this paper we use this convention so that the state space
of the occupancy process is finite dimensional. (Explicit formulas analogous to the
ones derived here also hold in the infinite dimensional case, though one must be
more careful in defining the PDE.) When the occupancy state is (x0, x1, . . . xI+),
the “un-normalized” or “relative” probability of throwing into a category i cell with
i ≤ I is simply (a+ i)xi. Let us temporarily abuse notation, and let xI+1, xI+2, . . .
denote the exact fraction in each category i with i > I. Since there are tn balls in
the cells before we throw,

S∞
i=0 ixi = t. Thus the (normalized and true) probability

that the ball is placed in an cell that contains exactly i balls, i = 0, 1, . . . I, is a+ia+txi,
and the probability that the ball is placed in an cell that has more than I balls is
1−SI

j=0
a+j
a+txj .

In order to define both the LLN and large deviation approximations, it is conve-
nient to introduce an occupancy process. We introduce a time variable t that ranges
from 0 to T. At a time t that is of the form l/n, with 0 ≤ l ≤ enTf an integer, l balls
have been thrown. Let Xn(t) =

�
Xn
0 (t),X

n
1 (t), . . .X

n
I (t),X

n
I+(t)

�
be the occupancy

state at that time. As noted previously, Xn
i (t) denotes the fraction of cells that

contain i balls at time t, i = 0, 1, . . . I, and Xn
I+(t) the fraction of cells that contain

more than I balls. The definition of Xn is extended to all t ∈ [0, T ] not of the form
l/n by piecewise linear interpolation. Note that Xn(t) is indeed a probability vector
in RI+2. If

SI .=
+
x ∈ RI+2 : xi ≥ 0, 0 ≤ i ≤ I + 1 and

I+1[
i=0

xi = 1

,
,

then for any t ∈ [0, T ] ,Xn(t) ∈ SI . Thus Xn takes values in U .
= C ([0, T ] ,SI). We

equip U with the usual supremum norm and on SI we take the usual L1 norm.
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It is often the case that one is interested in the large deviation properties at
the terminal time T (i.e., those of Xn(T )), and for a general initial condition of the
form Xn(t) = (x0, . . . , xI+). Here there is often a detour—one first identifies the large
deviation properties of the process, and then solves for the large deviation properties
of Xn(T ) via the so-called Contraction Mapping Theorem. This theorem represents
the sought after exponential rate of decay as the solution to a calculus of variations
problem, and therein lies the link to a PDE.

For our purposes an informal description of the process level large deviation
properties will suffice. We first define the rate function on path space. Given (x, t)
and a continuous trajectory ϕ with ϕ(t) = x, the rate I(ϕ;x, t) identifies the decay
rate for the probability that Xn is in a small neighborhood of ϕ:

lim
δ↓0
lim sup
n→∞

− 1
n
logP

+
sup
t≤s≤T

|Xn(s)− ϕ(s)| < δ

�����Xn(t) = xn

,

= lim
δ↓0
lim inf
n→∞ −

1

n
logP

+
sup
t≤s≤T

|Xn(s)− ϕ(s)| < δ

�����Xn(t) = xn

,
= I(ϕ;x, t).

Here xn is any sequence of initial conditions that can occur with positive probability
and which satisfy xn → x as n→∞. The proof of such a result and the identification
of the rate function are given in [7]. I(ϕ;x, t) can be represented as the integral, over
[t, T ], of a non-negative “cost” which measures the likelihood that the increments of
Xn follow the increments of ϕ, with higher cost corresponding to lower likelihood
(the LLN trajectory has zero cost). The integral form of I(ϕ;x, t) is a consequence
of the Markov property.

The specific form of I(ϕ;x, t) is as follows. Define the linear mapM : SI :→ RI+2

Mi[θ] =


−θ0 i = 0
θi−1 − θi 1 ≤ i ≤ I
θI i = I + 1

.

Let ϕ ∈ U be given with ϕ(t) = x. Suppose there is a Borel measurable function
θ : [t, T ] :−→ SI such that for any s ∈ [t, T ]

ϕ(s) = ϕ(t) +

] s

t
M [θ](u)du. (2.1)

We interpret θi(s) as the rate at which balls are thrown into cells that contain i
balls at time s. This rate will be viewed as a perturbation of the LLN limit rate
at which balls would be thrown, and the cost for this perturbation will measure the
likelihood that sure a perturbation occurs (with large cost corresponding to unlikely
perturbations).

The mapping M [θ] accounts for the fact that when a ball is placed in a category
i cell Xn

i decreases by 1/n and X
n
i+1 increases by 1/n. The rates θ(s) are unique in

the sense that if another θ̃ : [t, T ] :−→ SI satisfies (2.1) then θ̃ = θ a.e. on [t, T ] .We
call ϕ a valid occupancy state process if there exists θ : [t, T ] :−→ SI satisfying (2.1).
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In this case θ is called the occupancy rate process associated with ϕ. For x ∈ RI+2
and t ∈ [0,−a1{a<0} +∞1{a>0}), define the vector ρ(t, x) ∈ RI+2 by

ρk(t, x) =
a+ k

a+ t
xk, for k = 0, 1, . . . I, (2.2)

and

ρI+(t, x) = 1−
I[
k=0

a+ k

a+ t
xk.

For each a, ρk(t, x) gives the LLN limiting probability that at time t the next ball
will be placed in a category-k cell, given that the statistics of model a are used and
that Xn(t) = x. A direct calculation shows that if

x ∈ SI and
I+1[
k=0

kxk ≤ t, (2.3)

then ρ(t, x) is indeed a probability vector in RI+2, i.e., ρ(t, x) ∈ SI . It is easy to
observe that if ϕ is valid then ϕ(s) satisfies (2.3) for all s ∈ [0, T ]. This shows that
ρ (s,ϕ(s)) ∈ SI . For future use we define

τ(x, t)
.
=

#
t−

I[
k=0

kxk

$!
xI+ (2.4)

if xI+ > 0 and τ(x, t)
.
= I + 1 if xI+ = 0. Thus τ(x, t) can be interpreted as the

mean number of balls per cell among those of category I+. With this notation

ρI+(x, t) = (a+ τ(x, t))xI+1/(a+ t), (2.5)

and so ρI+(x, t) in some sense takes a form very similar to that of ρk(x, t) for
k = 0, 1, . . . , I.

Let δ > 0 be small. Observe that the occupancy state will not change very much
over [t, t+ δ] while nδ balls are placed into cells. Let θ denote the empirical measure
on the categories where these balls are placed. Then the new occupancy state is
the sum of the old state plus δM [θ]. Since the change in state is determined by
an empirical distribution for (at least approximately) iid random variables, Sanov’s
Theorem [1, Theorem 2.2.1] suggests that the cost appearing in the integral rep-
resentation for I(ϕ;x, t) should be defined in terms of the famous relative entropy
function. For two probability measures α and β on a Polish space A, the relative
entropy of α with respect to β is defined by

R (α||β) .=
]
A

�
log

dα

dβ

�
dα

whenever α is absolutely continuous with respect to β (and with the convention that
0 log 0 = 0). In all other cases we set R (α||β) =∞.When two probability vectors ρ
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and ν ∈ SI appear in the relative entropy function, we interpret them as probability
measures on the simplex {0, 1, . . . , I, I + 1}, and thus

R (ρ||ν) .=
I+1[
i=0

ρi log
ρi
νi
.

Important properties of relative entropy are that it is nonnegative, jointly convex
and lower semicontinuous in (α,β), and R (α||β) = 0 if and only if α = β [1, Lemma
1.4.3].

As observed before, when ϕ(s) is valid, ρ (s,ϕ(s)) ∈ SI , which makesR(θ(s)||ρ (s,ϕ(s)))
well defined. If in addition ϕ(t) = x, define

I(ϕ;x, t) =
] T

t
R(θ(s)||ρ (s,ϕ(s)))ds. (2.6)

If ϕ is not valid or ϕ(t) 9= x then define I(ϕ;x, t) =∞.
This defines the rate function for the models introduced at the beginning of

this section. Now suppose that one wishes to approximate probabilities involving
Xn(T ). Since the probability that Xn (as a process) is close to a given trajectory ϕ
decays exponentially, decay rates of quantities such as P {Xn(T ) ∈ A|Xn(t) = xn}
can (under appropriate regularity conditions on A) be found as follows. Among all
trajectories ϕ with ϕ(t) = x and ϕ(T ) ∈ A, identify the one with the smallest decay
rate c. Then c is also the exponential decay rate of P {Xn(T ) ∈ A|Xn(t) = xn}.
Hence the variational problem to be solved is

V (x, t) = inf
ϕ:ϕ(t)=x and ϕ(T )∈A

I(ϕ;x, t). (2.7)

If one is interested in expected values other than probabilities then variational prob-
lems of the more general form

V (x, t) = inf
ϕ:ϕ(t)=x

[I(ϕ;x, t) + F (ϕ(T ))] (2.8)

arise, and one is often particularly interested in the initial condition that corresponds
to starting with all cells empty: t = 0, x0 = 1 and xk = 0, k > 0. We will refer to
this as the empty initial condition.

Not all initial conditions are feasible, in the sense that they can be reached with
finite cost from the empty initial condition. Feasibility in this context depends on
the underlying parameter a.

Definition 2.1 (Feasible Domain). Define Da, the feasible domain for the occu-
pancy model with parameter a, as follows:

• when a > 0,

Da .=
+
(x, t) ∈ SI × [0, T ) : xI+1 > 0 and t >

I+1[
i=0

ixi

,
^+

(x, t) ∈ SI × [0, T ) : xI+1 = 0 and t =
I[
i=0

ixi

,
;
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• and when a < 0 and I = −a− 1,

Da .=
+
(x, t) ∈ SI × [0, T ) : t =

I+1[
i=0

ixi

,
.

In the first case the second set in the union reflects the fact that when xI+1 = 0
the number of balls thrown is exactly

SI
i=0 ixi, and similarly for the second case.

When a ∈ −N it is only possible to throw balls into the categories 0, 1, . . . ,−a− 1,
and the only possible categories are 0, 1, . . . ,−a. Thus if there are n cells there can
at most be −an balls thrown, and therefore T ≤ −a. When T = −a all the cells
have exactly −a balls, which is not an interesting case to study. As a consequence,
throughout this paper we assume T < −a. Also, because of the restriction on the
possible categories we can (without loss) assume that I = −a− 1. Hence for a < 0
we assume without loss that

T < −a, I = −a− 1. (2.9)

2.2 LLN Limits and Formal Derivation of the Explicit Solution

When constructing explicit solutions one needs some insight into the form of the
solution. In this section we present a formal derivation of an explicit solution to
(2.8) for the case F (x) = 1y(x) ·∞. Before doing so we calculate the LLN limits of
the occupancy processes, a necessary ingredient in the solution.

Equations for the LLN limits can easily be derived directly, or alternatively by
noting that they are the zero cost trajectories in the variational problem (2.8) with
F ≡ 0. It will suffice to consider initial conditions of the form x = ek, k = 0, 1, . . . , I,
where (ek)j is 1 if j = k and zero otherwise. Since the relative entropy vanishes only
if θ(s) = ρ (s,ϕ(s)), the LLN limits can be characterized by the system of ODEs

ϕ̇(s) =M [ρ (s,ϕ(s))], ϕ(t) = ek. (2.10)

Since the LLN limit is desired for all components of the occupancy process, we use
the infinite system rather than the system truncated at I+. These are easy to solve
because the equation for the jth component depends only on the j−1st component,
and so one can solve first for the kth component and then bootstrap. To write the
solution in explicit form, we need some notation. For all a ∈ R, a 9= 0 and i ∈ N, let�

a

i

�
.
=

Ti−1
j=0(a− j)
i!

.

Note that if a ∈ N and i > a then �ai� = 0, and that if a /∈ N ∪ {0} and i ∈ N, then�
a
i

� 9= 0. For i ∈ N ∪ {0} and a > 0, s ≥ 0 or a ∈ −N, 0 ≤ s ≤ −a, define
Qai (s) .=

�
−s
a

�i�−a
i

��
1 +

s

a

�−a−i
.

One can easily check that the solution to (2.10) is ϕi(s) = 0 if i < k, and

ϕk+i(s) = Qa+ki

�
a+ k

a+ t
(s− t)

�
8



if k ≥ i. In the limit a→∞ (MB statistics) one obtains the Poisson distribution

Qa+ki

�
a+ k

a+ t
(s− t)

�
→ Pi(s− t) = e−(s−t)(s− t)i/i!.

For the remainder of this section we assume a 9= ∞, with the understanding that
analogous statements for a =∞ can be obtained by passing to the limit.

We next present a formal and heuristic solution to the variational problem based
on probabilistic intuition. Recall that the variational problem is intended to approx-
imate the normalized logarithm of a probability. If one decomposes a probability
into products or conditional products, this will correspond to a decomposition of
the quantity being minimized as a sum.

We wish to solve (2.7) when A = {y}. Suppose that xi is interpreted as the
size of the “pool” of cells that start at time t in category i. Through the random
placements, this pool will evolve into sub-pools of differing categories. Let πki denote
the probability that a cell of category k at time t ends up a cell of category k+ i at
time T . Then satisfaction of the terminal constraint requires

yi =
i[

k=0

xkπ
k
i−k, 0 ≤ i ≤ I, yI+1 = 1−

I[
k=0

yk.

We use y
.
= x × π as shorthand for the last display. We require that the πk be

probabilities, and also a constraint that corresponds to the fact that n(T − t) balls
will be placed in the prelimit problem:

xk

∞[
j=0

πkj = xk, 0 ≤ k ≤ I + 1,
I+1[
k=0

xk

∞[
j=0

jπkj = T − t, (2.11)

Let F(x, t; y, T ) denote the set of π = (π0,π1, . . . ,πI ,πI+1) which satisfy the last
two displays. A terminal point y is feasible (for the given initial time and condition)
if F(x, t; y, T ) is not empty.

To guess the form of the solution to the variational problem, we consider the
allocation from a different perspective. Owing to the fact that the un-normalized
relative probabilities are affine in the number of balls currently in each cell, we
can first study the random evolution of the number of balls that are in each pool.
This can be done without knowing the details of how the balls are placed within
the pool. Indeed, the structural properties of the placement probabilities imply that
this process is also Markovian, and its large deviation properties are easy to identify.

Once we know the total number of balls that will end up in each pool, we then
consider the question of how they are distributed among cells within the pool. Here
we make an approximation that is formal but reasonable, which is that the rate
function for the empirical distribution within the pool can be found as follows. We
first generate iid random variables according to the LLN distribution appropriate
to the particular pool, and form the empirical distribution for this sample. The
rate function for this empirical distribution is a certain relative entropy identified by
Sanov’s Theorem. However, we must also impose the constraint on the (previously
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determined) number of balls that were placed into this particular pool, which adds
a constraint to the rate function. Finally, the overall rate function is found by
combining these two rates. The function found by this manner will be proved to be
the solution to the calculus of variations problem.

An argument based on Sanov’s Theorem shows that the variational problem for
the allocation between the pools is

inf

] T

t
R (u(s) nw(s)) ds,

where

wk(s) =
(a+ k)xk +

U s
t uk(τ)dτ

a+ s

is the probability that a ball is placed into pool k at time s. This is, in un-normalized
form, equal to axk+[number of balls per cell in pool k]xk, and the normalization is
just a+ s. The initial and terminal conditions are

wk(t) =
(a+ k)xk
a+ t

, wk(T ) =
(a+ k)xk + zk(T − t)

a+ T
,

where zk is the mean number of additional balls per unit time put into pool k. The
Euler-Lagrange equations for this problem are easily constructed and solved, and
one obtains as the optimal trajectory

wk(s) =
1

s+ a
((a+ k)xk + (s− t)zk)

(of course satisfaction of the Euler-Lagrange equations is not in general a sufficient
condition for optimality, but since our discussion is simply to motivate the form of
the solution this point is of no consequence). The cost is] T

t
R
�
[(s+ a)w(s)]� nw(s)� ds,

and for the optimal trajectory

[(s+ a)wk(s)]
� = zk.

The integral can be explicitly evaluated, and equals

I+[
k=0

zk · (T − t) · log
�
a+ t

a+ k
· zk
xk

�

−
I+[
k=0

[xk · (a+ k) + zk · (T − t)] · log
#
a+ k + zk

xk
(T − t)

a+ k + a+k
a+t (T − t)

$
.

This identifies the first part of the overall rate function.
The second part is found by considering placement within each pool. The mean

additional number of balls per cell in pool k is (zk/xk)(T − t). According to the
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LLN, the number of additional balls in a typical cell from pool k has distribution

Qa+k
�
zk
xk
(T − t)

�
if k ≤ I and Qa+τ(x,t)

�
zI+
xI+
(T − t)

�
if k = I+. Approximating

the true empirical measure within a given pool by that of the empirical measure for
iid random variables with the corresponding distribution, one formally obtains from

Sanov’s theorem the rate function R
�
πk
���Qa+k � zkxk (T − t)��, together with the

constraint
S∞
i=0 iπ

k
i =

zk
xk
(T −t) on the number of balls placed in pool k. Combining

the different contributions from the various pools with the contribution due to the
allocation between the pools and then applying the terminal constraint, one (again
formally) obtains the rate function

inf

+
I[
k=0

xkR

�
πk
����Qa+k � zkxk (T − t)

��

+xI+R

�
πI+

����Qa+τ(x,t)� zI+xI+ (T − t)
��

+
I+[
k=0

zk · (T − t) · log
�
a+ t

a+ k
· zk
xk

�

−
I+[
k=0

[xk · (a+ k) + zk · (T − t)] · log
#
a+ k + zk

xk
(T − t)

a+ k + a+k
a+t (T − t)

$,
,

where the infimum is over all π and z such that
S∞
i=0 iπ

k
i =

zk
xk
(T − t) and x×π = y.

However, a straightforward calculation using the specific form of Qa andS∞
i=0 iπ

k
i =

zk
xk
(T − t) gives

R

�
πk
����Qa+k �a+ ka+ t

(T − t)
��
−R

�
πk
����Qa+k � zkxk (T − t)

��
=

zk
xk
(T − t) · log

�
a+ t

a+ k
· zk
xk

�
− (a+ k) · log

#
a+ k + zk

xk
(T − t)

a+ k + a+k
a+t (T − t)

$

− (zk/xk)(T − t) · log
#
a+ k + zk

xk
(T − t)

a+ k + a+k
a+t (T − t)

$
,

with an analogous result for k = I+. If follows that the rate function can be written
in the simpler form

inf
π:x×π=y

+
I[
k=0

xkR

�
πk
����Qa+k �a+ ka+ t

(T − t)
��

+ xI+R

�
πI+

����Qa+τ(x,t)�a+ τ(x, t)

a+ t
(T − t)

���
,

with the infimum over z no longer necessary.
Let

J (x, t; y) .
= inf

ϕ∈C([t,T ],SI)
ϕ(t)=x,ϕ(T )=y

I(x, t;ϕ). (2.12)

The formal derivation just given suggests the following result, in which we also
simplify further where the special cases of FD and MB statistics allow.

11



Theorem 2.2 (Explicit Formula for the Rate Function). Consider an initial
condition (x, t) ∈ Da, and a feasible terminal condition y. If a ∈ (0,∞), define
τ(x, t) by (2.4). Then the quantity J (x, t; y) defined in (2.12) has the representation

J (x, t; y) = min
π∈F(x,t;y,T )

+
I[
k=0

xkR

�
πk
����Qa+k �a+ ka+ t

(T − t)
��

+ xI+1R

�
πI+1

����Qa+τ(x,t)�a+ τ(x, t)

a+ t
(T − t)

���
.

If a ∈ −N with I = −a− 1 then τ(x, t) = I + 1, and

J (x, t; y) = min
π∈F(x,t;y,T )

+
I+1[
k=0

xkR

�
πk
����Qa+k �a+ ka+ t

(T − t)
��,

.

In the final case of a =∞, we have

J (x, t; y) = min
π∈F(x,t;y,T )

+
I+1[
k=0

xkR
�
πk nP (T − t)

�,
.

Remark 2.3. Although the minimization problems in Theorem 2.2 appear to be
infinite dimensional, they can in fact be reduced to finite dimensional problems.
This is because if πk is the minimizer, then πkj takes a prescribed form for j > I. In

fact, all πkj can be represented in terms of no more than I + 3 Lagrange multipliers
as in (2.20) below.

2.2.1 The Hamilton-Jacobi-Bellman equation

Given Theorem 2.2 one can solve the problem with a general terminal condition F .
Conversely, if the problem with terminal cost can be solved for a sufficiently broad
class of F , one can derive Theorem 2.2. This is how we will prove the theorem, and
moreover the proof will be based on the fact that finite dimensional representations
analogous to those in Theorem 2.2 but with these terminal costs are classical sense
solutions to the associated PDE. The proof also has a number of side benefits, such
as convenient representations for the various derivatives of the solution in terms of
Lagrange multipliers.

The calculus of variations problem (2.8) has a natural control interpretation,
where θ(s), t ≤ s ≤ T is the control, ϕ̇(s) =M [θ](s) are the dynamics, R (θ(s)||ρ (s,ϕ(s)))
is the running cost and F (x) is the terminal cost. It is expected that if we define

V (x, t)
.
= inf

ϕ∈C([t,T ],SI),ϕ(t)=x

�] T

t
R (θ(s)||ρ (s,ϕ(s))) ds+ F (ϕ(T ))

�
, (2.13)

then V (x, t) is a weak-sense solution to the Hamilton-Jacobi-Bellman (HJB) equa-
tion

Wt +H(Wx, x, t) = 0,

12



and terminal condition
W (x, T ) = F (x).

Here the Hamiltonian H(p, x, t) is defined by

H(p, x, t)
.
= inf

θ∈SI
[kp,M [θ]l+R (θ nρ (t, x))]

and Wt and Wx denote the partial derivative with respect to t and gradient in x,
respectively. Note that by the representation formula [1, Proposition 1.4.2], the
infimum in the definition of H(p, x, t) can be evaluated, yielding+

Wt = log
�SI

k=0 xk

�
a+k
a+t

�
exp

�
Wxk −Wxk+1

�
+ xI+1

�
a+τ(x,t)
a+t

��
W (x, T ) = F (x)

. (2.14)

Note the use of the convenient expression (2.5) for ρI+(x, t).
For a general smooth F (2.14) need not have a smooth (C1) solution. However,

for affine terminal costs F (x) = kc, xl + b there is a C1 solution (it is in fact the
unique solution), and as remarked above, these solutions can be used to carry out
a fairly complete analysis of the problem with more general terminal conditions.
Indeed, for a general (proper) convex terminal cost F (x), the Legendre transform
gives a representation of the form

F (x) = sup
β∈RI+2

[kβ, xl − h(β)]

for some proper convex function h. Let V F (x, t) denote the solution (explicit or
otherwise) to the calculus of variations problem (2.13) with terminal cost F (·). Then
one can show

V F (x, t) = sup
β∈RI+2

V {'β,·�−h(β)}(x, t),

and an analogous formula for UF (x, t)
.
= inf[J (x, t; y) + F (y)]. Given Proposition

2.4 below, V F = UF then follows. Since ∞ · 1{y}c is a proper convex function, the
formula can be extended even further to very general F .

Observe that W is a solution of just the PDE alone (i.e., without the terminal
condition) if and only if W + c is a solution for any real number c. Since x is
a probability vector, it suffices to prove the representation under the conditions
cI+1 = 0 and b = 0.

2.3 Explicit solution for affine terminal costs

Proposition 2.4. Consider (x, t) ∈ Da and F (y) = kc, yl, where c ∈ RI+2 and
cI+1 = 0. Define

V (x, t)
.
= inf

ϕ∈C([t,T ],SI),ϕ(t)=x

�] T

t
R (θ(s)||ρ (s,ϕ(s))) ds+ F (ϕ(T ))

�
,
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and

U(x, t)
.
= min

π∈F(x,t;T )

+
I[
k=0

xkR

�
πk
����Qa+k �a+ ka+ t

(T − t)
��

(2.15)

+ xI+1R

�
πI+1

����Qa+τ(x,t)�a+ τ(x, t)

a+ t
(T − t)

��
+ F (x× π)

�
where π ∈ F (x, t;T ) means that π satisfies the constraints in (2.11). Then V (x, t) =
U(x, t).

The proof of this result is given in the next subsection. We close this subsection
with remarks on the LLN limit distributions.

We will use the fact that if a ∈ R and |z| < 1 then the binomial expansion

(1 + z)−a =
∞[
i=0

�−a
i

�
zi,

�
a

i

�
.
=

Ti−1
j=0(a− j)
i!

is valid, and if −a ∈ N then the sum contains only a finite number of nonzero
terms and is valid for all z ∈ R. Recall that for i ∈ N ∪ {0} and a > 0, s ≥ 0 or
a ∈ −N, 0 ≤ s ≤ −a, then

Qai (s) .=
�
−s
a

�i�−a
i

��
1 +

s

a

�−a−i
.

If a > 0, s ≥ 0 and |sθ/(a+ s)| < 1, then the binomial expansion gives
∞[
i=0

Qai (s)θi =
∞[
i=0

�
−s
a

�i�−a
i

��
1 +

s

a

�−a−i
θi

=
�
1 +

s

a

�−a ∞[
i=0

�
− s

s+ a
θ

�i�−a
i

�
=

�
1 +

s

a

�−a�
1− sθ

s+ a

�−a
=

�
1 +

s

a
− sθ
a

�−a
=

�
1 +

s

a
(1− θ)

�−a
.

We thus have the following expressions, where the second one may be justified by a
very similar calculation (when |sθ/(a+ s)| < 1):
∞[
i=0

Qai (s)θi =
�
1 +

s

a
(1− θ)

�−a
,

∞[
i=0

iQai (s)θi = sθ
�
1 +

s

a
(1− θ)

�−a−1
. (2.16)

Note also that when −a ∈ N and 0 ≤ s ≤ −a the number of nonzero summands is
finite and the formulas again hold. If −a ∈ N and 0 ≤ s ≤ −a or a > 0 and s ≥ 0
then Qai (s) ≥ 0 for i ∈ N ∪ {0}. Letting θ ↑ 1 in the first expression shows that
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under these conditions Qai (s) defines a probability measure on N∪{0}. When a = 0
we use the limiting values

Q00(s) = 1, Q0i (s) = 0
for all i ∈ N and s ≥ 0. For later use note that similar calculations show that if
−a ∈ N and 0 ≤ s ≤ −a or a > 0, s ≥ 0, and s/(a+ s) < 1, then

∞[
i=0

i2Qai (s)−
% ∞[
i=0

iQai (s)
&2
= s+

s2

a
. (2.17)

2.3.1 Analysis of the finite dimensional minimization problem

We now focus on proving Proposition 2.4. We will do so by proving that U(x, t)
is a classical sense solution to the HJB equation (2.14). A modification of the
standard verification argument [4] can then be used to show that V (x, t) = U(x, t).
The classical verification argument consists of two parts. One first considers any
valid occupancy process and control (ϕ, θ) for the initial condition (x, t). If U is a
smooth solution to the PDE (2.14) in neighborhood of {(ϕ(s), s) : t ≤ s ≤ T} and if
U(ϕ(T ), T ) = kϕ(T ), cl, then the chain rule implies that the cost along this trajectory
is at least U(x, t). The reverse inequality is proved by defining an optimal feedback
control through the HJB equation, using this control to construct a trajectory, and
then verifying (once again via the chain rule) that the cost for this control is U(x, t).
The characterization of V (x, t) as an infimum over all valid occupancy processes and
controls that start at (x, t) then gives V (x, t) = U(x, t). However, we have to clarify
here what is meant by a “classical sense” solution to (2.14). The difficulty is that
U(x, t) is only well defined on the set Da, which does not have interior.

Given any point (x, t) ∈ Da, we will prove that one can extend U(x, t) smoothly
to a neighborhood of (x, t) in RI+2 × R. To be more precise, for any such (x, t)
we will show there exists a neighborhood U ⊂ RI+2 × R of (x, t) and a function
Ū ∈ C∞(U ,R), such that Ū(y, s) = U(y, s) for (y, s) ∈ U ∩Da, and that Ū satisfies
(2.14) in U ∩ Da. One can then use Ū in place of U in the verification argument,
since any feasible trajectory will never leave Da.

To analyze U(x, t) we formulate an appropriate Lagrangian. Let

f(x, t;π)
.
=

I[
k=0

xkR

�
πk
����Qa+k �a+ ka+ t

(T − t)
��

(2.18)

+ xI+1R

�
πI+1

����Qa+τ(x,t)�a+ τ(x, t)

a+ t
(T − t)

��
+ kc, x× πl

and for a set of Lagrange multipliers Λ
.
= (λ, µ) = (λ0,λ1, . . . ,λI ,λI+1, µ), let

L(x, t;Λ;π) (2.19)

.
= f(x, t;π) +

I+1[
k=0

λkxk

1− ∞[
j=0

πkj

+ µ
T − t− I+1[

k=0

xk

∞[
j=0

jπkj

 .
It follows from the definition of U(x, t) that U(x, t) = infπ supΛ L(x, t;Λ;π).
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Note that by the joint convexity of relative entropy, L(x, t;Λ;π) is convex in
π. Thus (2.15) is a standard convex programming problem with linear constraints,
except that the minimization is over a variable π which is infinite dimensional. Hence
the standard Lagrange multiplier method does not apply directly. If we temporarily
ignore this issue, then to guess the form of the minimizer one would of course set
DπL(x, t;Λ;π) = 0 to get π = π(x, t;Λ), where Dπ stands for the gradient in π and

πkj (x, t;Λ) = Qa+kj

�
a+ k

a+ t
(T − t)

�
eλk−1+jµ−�k+j

k = 0, 1, . . . , I and j ≥ 0, (2.20)

πI+1j (x, t;Λ) = Qa+τ(x,t)j

�
a+ τ(x, t)

a+ t
(T − t)

�
eλI+1−1+jµ.

Here, for notational simplicity, we extend c in Proposition 2.4 by letting ci = 0
when i > I. Note in particular that

�
πk
�
will depend on x only when k = I + 1.

Observe also that setting DΛL(x, t;Λ;π) = 0 gives the constraints (2.11). For any
(x, t) ∈ RI+2 × R and Λ ∈ RI+3, let π(x, t;Λ) be determined by (2.20) and define
G : RI+2 ×R×RI+3 :→ RI+3 by

Gk(x, t;Λ) =

1− ∞[
j=0

πkj (x, t;Λ)

 , k = 0, 1, . . . , I + 1

GI+2(x, t;Λ) =

T − t− I+1[
k=0

xk

∞[
j=0

jπkj (x, t;Λ)

 .
In the next theorem we show that the π(x, t;λ) defined in (2.20) indeed give the

minimizer of (2.15).

Theorem 2.5. For any (x, t) ∈ Da define U(x, t) by (2.15). Then there exists
Λ ∈ RI+3 so that G(x, t;Λ) = 0, and π(x, t;Λ) is a minimizer of (2.15). Thus

U(x, t) = L
�
x, t;Λ;π(x, t;Λ)

�
. In addition, the Λ that satisfies G(x, t;Λ) = 0 is

unique. Hence if G(x, t;Λ) = 0 for some Λ ∈ RI+3, then π(x, t;Λ) is a minimizer
of (2.15).

The proof is divided into three lemmas. For a point (x, t) ∈ Da, quantities of
the following sort will appear frequently in the proofs of the lemmas:

π̄kj
.
= Qa+kj

�
a+ k

a+ t
(T − t)

�
(2.21)

π̄I+1j
.
= Qa+τ(x,t)j

�
a+ τ(x, t)

a+ t
(T − t)

�
for k = 0, 1, . . . , I; j = 0, 1, . . . .

In particular, it will often be the case that (2.16) must be invoked, with a there
replaced by a+k [or a+τ(x, t)] and s there replaced by the corresponding argument
in the expression above. We note that the conditions required for (2.16) will always
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hold so long as t ∈ [0, T ]. This is straightforward to check in the case of a > 0. For
the case −a ∈ N, it uses that −a = I + 1, T ≤ −a, and that always τ(x, t) = I + 1.
Thus for example for any k ∈ {0, . . . ,−a} and t ∈ [0, T ], (a+ k)(T − t)/(a+ t) ≥ 0
and (T − t)/(−a − t) ≤ 1 shows that (a+ k)(T − t)/(a + t) ≤ −a − k, as required
for (2.16).

Lemma 2.6 (General properties). For any (x, t) ∈ Da define U(x, t) by (2.15).
Then F(x, t;T ) is nonempty, minimizing measures π∗ exist, and if k is such that
xk > 0 and j ∈ {0, 1, . . .}, then

π̄kj > 0 implies π∗kj > 0. (2.22)

Proof. According to (2.16) the quantities in (2.21) are probabilities that satisfy
(2.11). This shows that F(x, t;T ) is nonempty. Next note that with this notation,
we can rewrite (2.18) as

f(x, t;π) = R (x⊗ π nx⊗ π̄ ) + kc, x× πl, (2.23)

where (x ⊗ π)i,j = xiπ
i
j . Since the relative entropy has compact level sets in the

first argument [1, Lemma 1.4.3(c)], the existence of a minimizer of (2.15) follows.
In addition, because of the strict convexity in that argument we know that the
minimizer is unique up to those

�
πk·
�
with xk > 0.

For a general initial condition (x, t) let K .
= {k : xk > 0}. Then the choice of�

πk· : k /∈ K
�
will not affect either the constraint (2.11) or the objective function

(2.23). Hence we can consider the equivalent minimization problem over M(x,t) =q
πkj : k ∈ K, j = 0, 1, . . .

r
. As discussed in the previous paragraph, a minimizer in

M(x,t) exists and is unique. Let this minimizer be denoted π∗.
Lastly we must show (2.22). Let π"

.
= (1− �)π∗+ �π̄, where π̄ is defined in (2.21)

and let f(�) = f(x, t;π"). By computing the derivative of f(�) explicitly, it is readily
observed that if (2.22) does not hold then f �(�)→ −∞ as �→ 0. Thus (2.22) must
be true since otherwise π∗ is not the minimizer.

Lemma 2.7 (Characterization of the minimizer). For any (x, t) ∈ Da define
U(x, t) by (2.15). Then there exists Λ ∈ RI+3 so that G(x, t;Λ) = 0, and π(x, t;Λ)
is a minimizer of (2.15).

Proof. We want to argue that the minimizers must take the form of (2.20). However,
there is a difficulty since M(x,t) can be infinite dimensional. To deal with this we
use a truncation argument adapted from one in [2]. For any N ∈ N let

T (N)
.
=
[
k∈K

xk

N[
j=0

jπ∗kj , α
(N)
k

.
=

N[
j=0

π∗kj , k ∈ K

and also let
f (N)(x, t;π)

.
= f(x, t; π̂),
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where

π̂kj = πkj for k ∈ K, j ≤ N
π̂kj = π∗kj for k ∈ K, j > N.

Since π∗ is the minimizer of (2.15) automatically

U(x, t) = min
π
f (N)(x, t;π), (2.24)

where the minimum is subject to the constraints

[
k∈K

xk

N[
j=0

jπkj = T
(N),

N[
j=0

πkj = α
(N)
k , k ∈ K.

We can now apply the standard Lagrange multiplier method to (2.24). The first
step is to formulate the Lagrangian for this finite dimensional problem:

LN (x, t;Λ;π)

.
= fN (x, t;π) +

[
k∈K

λ
(N)
k xk

α
(N)
k −

N[
j=0

πkj

+ µ(N)
T (N) − I+1[

k=0

xk

N[
j=0

jπkj

 .
We have that

q
π∗kj : k ∈ K, j ≤ N

r
satisfies the constraints in (2.24), and by (2.22)

we know that π∗kj > 0 if π̄kj > 0. Hence by [6, Corollary 28.2.2] and [6, Theorem

28.3] applied to (2.24), there must exist a set of Lagrange multipliers λ
(N)
k , µ(N) so

that the minimizer of (2.24) π∗kj has the form

π∗kj = π̄kj e
λ
(N)
k −1+jµ(N)−�k+j (2.25)

for k ∈ K and 0 ≤ j ≤ N . If k + j > I, then since ck+j = 0

π∗kj+1
π∗kj

= C · eµ(N) ,

where C does not depend on N . Thus µ(N) is independent of N , and hence λ(N) is
also independent of N . Since the choice of N is arbitrary, we then know that for
all k ∈ K and j = 0, 1, ..., π∗kj indeed has the form in (2.20) for a suitable choice

of λk and µ. For k /∈ K, we can simply define π∗kj as in (2.25) and then solve for

λk from the normalization constraint
S∞
j=0 π

∗k
j = 1. When defined in this way,

Λ∗ = (λ0, . . . ,λI+1, µ) automatically satisfies G(x, t;Λ∗) = 0.
For k ∈ K the corresponding λk are a Kuhn-Tucker vector as in [6, Corollary

28.2.2], and hence each λk < ∞. However, for k /∈ K the finiteness of λk is not
automatic.
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To show the finiteness, we first insert the explicit form of πI+1j (x, t;Λ) from
(2.20) into GI+1(x, t,Λ) = 0 to obtain

∞[
j=0

Qa+τ(x,t)j

�
a+ τ(x, t)

a+ t
(T − t)

�
eλI+1−1+jµ = 1.

Using (2.16) to evaluate the sum gives

λI+1 = (a+ τ(x, t)) log

�
a+ T − eµ(T − t)

a+ t

�
+ 1.

For notational simplicity define

η(t, µ)
.
= log

�
a+ T − eµ(T − t)

a+ t

�
, λ(x, t;µ)

.
= (a+ τ(x, t))η(t, µ) + 1. (2.26)

Then λI+1 = λ(x, t;µ). Choose C <∞ such that |ck| ≤ C for 0 ≤ k ≤ I. Then
∞[
j=0

π̄kj e
λk−1+jµ−C ≤

∞[
j=0

πkj (x, t;Λ) ≤
∞[
j=0

π̄kj e
λk−1+jµ+C .

A calculation of the same sort that gave the display above (2.26) gives

(a+ k)η(t, µ) + 1− C ≤ λk ≤ (a+ k)η(t, µ) + 1 + C k = 0, . . . , I.

Hence λk < ∞ so long as λi < ∞ for some i = 0, 1, . . . , I, I + 1, which is true by
[6, Corollary 28.2.2]. This completes the proof that for any (x, t) ∈ Da there exists
Λ ∈ RI+3 so that G(x, t;Λ) = 0 and π(x, t;Λ) is a minimizer of (2.15).

The next lemma will focus on the claim that for (x, t) ∈ Da, there is only one Λ
that satisfies G(x, t,Λ) = 0, which together with the previous lemma completes the
proof of Theorem 2.5.

Lemma 2.8 (Uniqueness of characterization). For (x, t) ∈ Da, there is only
one Λ ∈ RI+3such that G(x, t,Λ) = 0.
Proof. Recalling the definition of π̄ in (2.21), notice that (2.20) is simply

πkj (x, t;Λ) = π̄kj e
λk−1+jµ−�k+j for k = 0, 1, . . . , I + 1, j = 0, 1, . . . .

As noted previously, for any (x, t) ∈ Da we can assume that each
�
π̄k·
�
is a valid prob-

ability vector. Thus πkj (x, t;Λ) ≥ 0 and for each k at least one of
q
πkj (x, t;Λ), j = 0, 1, . . .

r
is strictly positive. If

αk
.
=

∞[
j=0

πkj (x, t;Λ) Tk
.
=

∞[
j=0

jπkj (x, t;Λ),
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then αk > 0 for each k = 0, 1, . . . , I, I + 1 and any Λ ∈ RI+3. Using the particular
dependency of πkj (x, t;Λ) on Λ, one can compute

∂πkj (x,t;Λ)

∂λk
= πkj (x, t;Λ)

∂πkj (x,t;Λ)

∂µ = jπkj (x, t;Λ)
∂πkj (x,t;Λ)

∂λl
= 0 l 9= k.

It is straightforward to construct a dominating function of the form π̄kj · C ·Dj for
suitable constants C and D, and hence by the Lebesgue Dominated Convergence
Theorem one can compute DΛG(x, t;Λ) explicitly as

−α0 · · · 0 −T0
... · · · ...

...
0 · · · −αI+1 −TI+1

−x0T0 · · · −xI+1TI+1 −
SI+1
k=0 xk

S∞
j=0 j

2πkj (x, t;Λ)

 .
Using elementary row operations to make the matrix upper triangular, we see
that {−αk : k = 0, 1, . . . , I + 1} and

SI+1
k=0

xk
αk
T 2k −

SI+1
k=0 xk

S∞
j=0 j

2πkj (x, t;Λ) are
the eigenvalues of DΛG(x, t;Λ). We have already observed that αk > 0 for all
k = 0, 1, . . . , I + 1. Also, for every k = 0, 1, . . . , I + 1 the Cauchy-Schwartz inequal-
ity implies ∞[

j=0

j2πkj (x, t;Λ)

 ∞[
j=0

πkj (x, t;Λ)

 ≥
 ∞[
j=0

jπkj (x, t;Λ)

2

.

It is easy to verify that the necessary condition for equality [πkj = j2πkj for all j]
does not hold. Hence the inequality is strict, and therefore ∞[

j=0

j2πkj (x, t;Λ)

 >
T 2k
αk
.

Thus DΛG(x, t;Λ) is negative definite for all Λ ∈ RI+3.
Now we can prove the uniqueness of Λ. Suppose there are two different Λ1,Λ2 ∈

RI+3 such that G(x, t;Λi) = 0, i = 1, 2. Define Λ(�)
.
= �Λ1 + (1− �)Λ2 and

h(�)
.
= kG(x, t;Λ(�)),Λ1 − Λ2l.

Then h�(�) = (Λ1 − Λ2)T ·DΛG · (Λ1 − Λ2). Since DΛG(x, t;Λ) is always negative
definite, h�(�) < 0 for all 0 < � < 1. However h(0) = h(1) = 0. This contradiction
shows that G(x, t;Λ) = 0 has a unique solution in Λ.

The next theorem considers differentiability properties of U(x, t). As mentioned
previously, we first extend the definition of U(x, t) to a neighborhood of (x, t) in
RI+2 ×R, label this extension Ū(x, t), and then show Ū(x, t) is differentiable in the
normal Euclidean sense. For our needs (a verification argument) the function Ū(x, t)
can be used in lieu of U(x, t).
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Theorem 2.9. Fix (x, t) ∈ Da and define U(x, t) by (2.15). Then there is an
open neighborhood U of (x, t) and an extension Ū of U from Da ∩ U to U which is
differentiable on U.
Proof. By Theorem 2.5, for any (x, t) ∈ Da there exists Λ so that G(x, t;Λ) = 0 and
U(x, t) = L

�
x, t;Λ,π(x, t;Λ)

�
. A natural approach to proving smoothness would

be to apply the Implicit Function Theorem. There is however a difficulty with
this approach, owing to the fact that the non-smooth function τ(x, t) appears in
the constraints involving GI+1 and GI+2. To avoid this difficulty we consider an
equivalent but less obvious formulation of the constraint.

As discussed above (2.26), if the Lagrange multiplier λI+1 is set to λ(x, t;µ),
then the constraint GI+1(x, t;Λ) = 0 will hold automatically. We will work with the
reduced set of multipliers Λ̃

.
= {λ0, . . . ,λI , µ} and the definition

Λ
�
x, t; Λ̃

�
.
= {λ0,λ1, . . . ,λI ,λ(x, t;µ), µ} . (2.27)

Setting

H(x, t; Λ̃)
.
= L

#
x, t;Λ

�
x, t; Λ̃

�
;π
�
x, t;Λ

�
x, t; Λ̃

��$
(2.28)

gives U(x, t) = H(x, t; Λ̃).
To apply the Implicit Function Theorem we must show that there are smooth

constraints that characterize Λ̃. For i = 0, . . . , I we use G̃i(x, t; Λ̃) = 0, where
G̃i(x, t; Λ̃) = Gi(x, t;Λ). These constraints are equivalent since π

k
j does not depend

on λI+1 for k ≤ I. Since GI+1(x, t;Λ) = 0 holds automatically, we need only define
G̃I+1 so that G̃I+1(x, t; Λ̃) = 0 is equivalent to GI+2(x, t;Λ) = 0. We have

GI+2(x, t;Λ) = T − t−
I[
k=0

xk

∞[
j=0

jπkj (x, t;Λ)− xI+1
∞[
j=0

jπI+1j (x, t;Λ),

and thus set
G̃I+1(x, t; Λ̃)

.
= GI+2(x, t;Λ(x, t; Λ̃)). (2.29)

Since πkj (·) does not depend on λI+1 when k ≤ I we abuse notation and write the
terms of the form πkj (x, t;Λ(x, t; Λ̃)) as π

k
j (x, t; Λ̃). Thus

G̃I+1(x, t; Λ̃) = T − t−
I[
k=0

xk

∞[
j=0

jπkj (x, t; Λ̃)− xI+1
∞[
j=0

jπI+1j (x, t;Λ(x, t; Λ̃)).

Since for (x, t) ∈ Da the value Λ such that G(x, t;Λ) = 0 exists and is unique, the
value Λ̃ such that G̃(x, t; Λ̃) = 0 exists and is also unique.

We have that DΛ̃G̃(x, t; Λ̃) equals
−α0 · · · 0 −T0
... · · · ...

...
0 · · · −αI −TI

−x0T0 · · · −xITI DµG̃I+1(x, t; Λ̃)

 ,

21



where it is only the last entry that must be identified.
We pause to introduce a convention which will be used in the remainder of the pa-

per. Whenever a differential operator of the form Dx precedes a composed function,
the derivative is computed via the chain rule for precisely those arguments where
a composed dependence on x is made explicit in the notation. Thus in computing
DµG̃I+1(x, t; Λ̃) we use (2.29) and calculations in the last section to get

DµG̃I+1(x, t; Λ̃)

= DµGI+2(x, t;λ0, . . . ,λI ,λ(x, t;µ), µ)

= DµGI+2(x, t;λ0, . . . ,λI ,λI+1, µ) +DλI+1GI+2(x, t;λ0, . . . ,λI ,λI+1, µ) ·Dµλ(x, t;µ)

= −
I+1[
k=0

xk

∞[
j=0

j2πkj (x, t;Λ(x, t; Λ̃))− xI+1TI+1 ·DµλI+1(x, t;µ).

It will be useful to express πI+1 in the Qa(s) notation. We have

πI+1j = Q
a+τ(x,t)
j

�
a+ τ(x, t)

a+ t
(T − t)

�
eλI+1−1ejµ.

Recall that λI+1 is chosen to make this a probability measure. By (2.16),

eλI+1−1 =
�
1 +

T − t
a+ t

(1− eµ)
�a+τ(x,t)

.

Hence using a little algebra we can write

πI+1j

=

�
−T − t
a+ t

�j � −a− τ(x, t)
j

��
1 +

T − t
a+ t

�−a−τ(x,t)−j
ejµ
�
1 +

T − t
a+ t

(1− eµ)
�a+τ(x,t)

=

�
− eµ(T − t)
a+ T − eµ(T − t)

�j � −a− τ(x, t)
j

��
a+ T

a+ T − eµ(T − t)
�−a−τ(x,t)−j

= Q
a+τ(x,t)
j

�
eµ(T − t)(a+ τ(x, t))

a+ T − eµ(T − t)
�
.

Again using (2.16)

TI+1 =
∞[
j=0

jπI+1j (x, t;Λ(x, t; Λ̃)) =
eµ(a+ τ(x, t))(T − t)
a+ T − eµ(T − t) . (2.30)

Recalling the definition

λ(x, t;µ) = (a+ τ(x, t)) log

�
a+ T − eµ(T − t)

a+ t

�
,

a direct calculation shows Dµλ(x, t;µ) = −TI+1, and hence

DµG̃I+1(x, t; Λ̃) = −
I+1[
k=0

xk

∞[
j=0

j2πkj (x, t;Λ(x, t; Λ̃)) + xI+1T
2
I+1. (2.31)
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Since αI+1 = 1, it follows that the eigenvalues ofDΛ̃G̃(x, t; Λ̃) are−α0,−α1, · · · ,−αI
and

SI+1
k=0

xk
αk
T 2k −

SI+1
k=0 xk

S∞
j=1 j

2πkj (x, t;Λ(x, t; Λ̃)). By the same argument as was

used for DΛG(x, t;Λ) these are all negative, and hence DΛ̃G̃(x, t; Λ̃) is invertible.

We next claim that DΛ̃G̃ is smooth in (x, t). One can check that the only

potentially difficult component is DµG̃I+1(x, t; Λ̃), and of this the only non-trivial
part is

xI+1

 ∞[
j=0

j2πI+1j (x, t;Λ(x, t; Λ̃))− T 2I+1

 .
Using (2.17) and some algebra shows this term equals

−xI+1(a+ τ(x, t)) · (t− T )eµ(a+ T )
[eµ(t− T ) + a+ T ]2 .

Although τ(x, t) is not smooth xI+1(a+ τ(x, t)) is always smooth, and thus DµG̃ is
smooth in (x, t). Note that the denominator does not vanish since η(t, µ) > −∞.

Therefore G̃(·; ·) is smooth in a neighborhood of (x, t; Λ̃). By the Implicit Func-
tion Theorem, for any (x, t) ∈ Da there exists a neighborhood U ⊂ RI+1×R of (x, t),
a neighborhood V ⊂ RI+2 of Λ̃, and a C∞ function g : U :→ V, so that Λ̃ = g(x, t)
and for every (y, s) ∈ U , G̃(y, s; g(y, s)) = 0. Define

Ū(y, s) = H(y, s; g(y, s))

Since g(y, s) is smooth in U , Ū ∈ C∞(U ,R), and by Theorem 2.5 Ū(y, s) = U(y, s)
for (y, s) ∈ U ∩Da.

The next theorem expresses the derivatives in terms of the Lagrange multipliers.

Theorem 2.10. Fix (x, t) ∈ Da, and let Λ̃∗ be the associated Lagrange multiplier.
We have�

Dxk Ū(x, t)−Dxk+1Ū(x, t) = λ∗k − λ∗k+1 + η∗ k = 0, 1, . . . , I − 1
DxI Ū(x, t)−DxI+1Ū(x, t) = λ∗I − 1− (a+ I)η∗

and DtU(x, t) = η∗ − µ∗.
Proof. Consider any point (x, t) ∈ Da and let Λ̃∗ be the associated Lagrange
multiplier. By Theorem 2.9 there exists U ⊂ RI+1 × R a neighborhood of (x, t),
V ⊂ RI+2 a neighborhood of Λ̃∗, and a C∞ function Λ̃ : U :→ V such that and
Ū(y, s)

.
= H(y, s; Λ̃(y, s)) satisfies Ū(y, s) = U(y, s) for any (y, s) ∈ U ∩Da.

Keeping in mind the convention regarding differential operators

DxkŪ(x, t) = DxkH(x, t; Λ̃(x, t))

= DxkH(x, t; Λ̃
∗) +DΛ̃H(x, t; Λ̃

∗)DxkΛ̃(x, t).

Thus in the first line H(x, t; Λ̃(x, t)) is considered as the composed function of (x, t)
(which by definition is Ū(x, t)), and we take derivatives with respect to two argu-
ments and evaluate at (x, t). In the second line, DxkH(x, t; Λ̃

∗) means H(x, t; Λ̃∗)
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is now a function of the independent variables (x, t, Λ̃∗) and we take derivatives
with respect to xk and then evaluate it at (x, t; Λ̃

∗). In all calculations, vectors are
interpreted as row vectors.

With the notation established, we can proceed. Note that by definition (2.28)

DΛ̃H(x, t; Λ̃)

= DΛL (x, t;Λ;π)DΛ̃Λ
�
x, t; Λ̃

�
+DπL (x, t;Λ;π)DΛ̃π

�
x, t;Λ

�
x, t; Λ̃

��
.

Since Λ∗ = Λ(x, t; Λ̃∗) and π∗ are chosen so thatDπL (x, t;Λ
∗;π∗) = DΛL (x, t;Λ

∗;π∗) =
0, we have DΛ̃H(x, t; Λ̃

∗) = 0. This gives

Dxk Ū(x, t) = DxkH(x, t; Λ̃
∗), k = 0, 1, . . . , I + 1. (2.32)

By the same argument, we have DtŪ(x, t) = DtH(x, t; Λ̃
∗).

Next, we insert the explicit form of π(x, t;Λ) from (2.20) into (2.19) to get

L(x, t;Λ,π(x, t;Λ))

=
I+1[
k=0

xk

∞[
j=0

[λk − 1 + jµ]πkj (x, t;Λ) +
I+1[
k=0

λkxk

1− ∞[
j=0

πkj (x, t;Λ)


+µ

T − t− I+1[
k=0

xk

∞[
j=0

jπkj (x, t;Λ)


= −

I[
k=0

xk

∞[
j=0

πkj (x, t;Λ)− xI+1
∞[
j=0

πI+1j (x, t;Λ) +
I+1[
k=0

λkxk + µ (T − t) .

In the definition of H(x, t; Λ̃), λI+1 is replaced by λ(x, t;µ) so that automaticallyS∞
j=0 π

I+1
j (x, t;Λ) = 1. Using xI+1λ(x, t;µ) − xI+1 = xI+1(a + τ(x, t))η(t, µ) from

(2.26) and the definition of τ(x, t),

H(x, t; Λ̃) =
I[
k=0

xkλk + µ(T − t)−
I[
k=0

xk

∞[
j=0

πkj (x, t; Λ̃)

+ xI+1(a+ τ(x, t))η(t, µ)

=
I[
k=0

xkλk + µ(T − t)−
I[
k=0

xk

∞[
j=0

πkj (x, t; Λ̃)

+a

#
1−

I[
k=0

xk

$
η(t, µ) +

#
t−

I[
k=0

kxk

$
η(t, µ).

Recall from the explicit expression (2.20) that for k = 0, 1, . . . , I, πkj (x, t;Λ) does

not depend on x or on λI+1. Hence the x dependence can be omitted in πkj (x, t; Λ̃)
in the last display, and we do so from now on.

By (2.32),
Ūxk = λ∗k − 1− (a+ k)η∗, k = 0, 1, . . . , I,
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and ŪxI+1 = 0, where η∗ = η(t, µ∗). This implies the first claim of the theorem.
Similarly

DtŪ(x, t)

= DtH(x, t; Λ̃
∗)

= η∗ − µ∗ −Dt


I[
k=0

xk

∞[
j=0

πkj (t; Λ̃
∗)

+
+
a

#
1−

I[
k=0

xk

$
+

#
t−

I[
k=0

kxk

$,
Dtη(t, µ

∗)

= η∗ − µ∗ −Dt


I[
k=0

xk

∞[
j=0

πkj (t; Λ̃
∗)

+ xI+1(a+ τ(x, t))Dtη(t, µ
∗).

We now will verify that

−Dt


I[
k=0

xk

∞[
j=0

πkj (t; Λ̃
∗)

+ xI+1(a+ τ(x, t))Dtη(t;µ
∗) = 0, (2.33)

which implies DtU(x, t) = η∗−µ∗. By the explicit formula for πkj (t; Λ̃) in (2.20) and
the definition of Qaj (s), for all k = 0, 1, . . . , I; j = 0, 1, . . .

Dtπ
k
j (t; Λ̃) = jπ

k
j (t; Λ̃)

a+ T

(t− T )(a+ t) +
(a+ k + j)

a+ t
πkj (t; Λ̃).

A suitable dominating function can be found, and thus by the Lebesgue Dominated
Convergence Theorem

Dt


I[
k=0

xk

∞[
j=0

πkj (t; Λ̃)


=

I[
k=0

xk

∞[
j=0

�
jπkj (t; Λ̃)

a+ T

(t− T )(a+ t) +
(a+ k + j)

a+ t
πkj (t; Λ̃)

�
.

Using that π(x, t;Λ∗) satisfies the constraint (2.11) and some elementary algebra,

Dt


I[
k=0

xk

∞[
j=0

πkj (t; Λ̃
∗)


= −xI+1

S∞
j=0 jπ

I+1
j (x, t;Λ∗)

t− T − xI+1(a+ τ(x, t))

a+ t

Equation (2.30) and the definition of η in (2.26) give

TI+1 =
T − t
a+ t

(a+ τ(x, t))eµ
∗−η∗ , (2.34)

and hence

Dt


I[
k=0

xk

∞[
j=0

πkj (t; Λ̃
∗)

 = −a+ τ(x, t)

a+ t
xI+1

�
1− eµ∗−η∗

�
. (2.35)
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The definition of η(t, µ) in (2.26) and (a+ t)eη = a+ T − eµ(T − t) gives

Dtη(t, µ) =
eµ

a+ T − (T − t)eµ −
1

a+ t
=
eµ−η − 1
a+ t

.

Finally, combining this with (2.35) gives (2.33).

Our final theorem shows that Ū satisfies the HJB equation (2.14) in the classical
sense on U . When combined with a standard verification argument as in [4], this
will imply V (x, t) = Ū(x, t) = U(x, t) on Da.
Theorem 2.11. Ū satisfies (2.14) on Da.
Proof. Having derived various expressions for the derivatives of Ū in terms of the
Lagrange multipliers in Theorem 2.10, to show that Ū(x, t) satisfies the PDE (2.14)
it remains to show

e−µ
∗+η∗ =

I−1[
k=0

xk
a+ k

a+ t
eλ
∗
k−λ∗k+1+η∗+xI

a+ I

a+ t
eλ
∗
I−1−(a+I)η∗+xI+1

a+ τ(x, t)

a+ t
. (2.36)

Recall from (2.20) that for k = 0, 1, . . . , I and j ≥ 0

π∗kj = Qa+kj

�
a+ k

a+ t
(T − t)

�
eλ
∗
k−1+jµ∗−�k+j .

Using the definition of Qa+kj , for k = 0, 1, . . . , I − 1

π∗k+1j =
(j + 1)(a+ t)

(a+ k)(T − t)π
∗k
j+1e

λ∗k+1−λ∗ke−µ
∗
.

Now sum both sides from j = 0 to ∞ and use the fact that
S∞
j=0 π

∗k
j = 1 to get

eλ
∗
k−λ∗k+1 = e−µ

∗ · (a+ t)
S∞
j=1 jπ

∗k
j

(T − t)(a+ k) . for k = 0, 1, . . . , I − 1. (2.37)

Inserting (2.37) into (2.36), a little algebra shows that satisfaction of the PDE is
equivalent to

(T − t) =
I−1[
k=0

xk

∞[
j=0

jπ∗kj + xI
a+ I

a+ t
(T − t)eλ∗I−1−(a+I+1)η∗+µ∗

+xI+1
a+ τ(x, t)

a+ t
(T − t)e−η∗+µ∗ . (2.38)

Since π∗Ij = Qa+Ij

�
a+I
a+t (T − t)

�
eλ
∗
I−1+jµ∗ for j ≥ 1, by (2.16)

∞[
j=1

jπ∗Ij =
∞[
j=1

jQa+Ij

�
a+ I

a+ t
(T − t)

�
eλ
∗
I−1+jµ∗

=
T − t
a+ t

(a+ I)eλ
∗
I−1−η∗(a+I+1)+µ∗ (2.39)
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where the last equality uses the definition of η in (2.26).
Inserting (2.34) and (2.39) into

SI+1
k=0 xk

S∞
j=0 jπ

k
j = T − t, we then have

(T − t) =
I−1[
k=0

xk

∞[
j=0

jπ∗kj + xI
a+ I

a+ t
(T − t)eλ∗I−1−η∗(a+I+1)+µ∗

+xI+1
a+ τ(x, t)

a+ t
(T − t)e−η∗+µ∗ .

We have thus verified (2.38), which completes the proof that Ū satisfies (2.14).

2.4 Minimizing Trajectories

The minimizing trajectories associated with the calculus of variations problem have
important qualitative and computational uses. Perhaps the most important is that
they identify the most likely way a rare event will occur [5].

Identification of the minimizing trajectories in the MB case was done in [2] using
the Euler-Lagrange equations, a system of nonlinear ordinary differential equations.
The solutions to these equation are called extremals, and in general being an ex-
tremal is neither a necessary or sufficient condition for minimality. In [2], a direct
but detailed argument using Lagrange multiplier techniques was used to show the
extremals were indeed minimizers. Here we take a different tack. We start in [2]
with a two-parameter family of solutions to the Euler-Lagrange equations that iden-
tify the extremals. The two parameters are themselves characterized as the solution
to a pair of nonlinear algebraic equations. These parameters and the form of the
extremals suggest values for the Lagrange multipliers in the explicit representation
(2.15), and indeed it is shown that characterizing equations G(x, t;Λ) = 0 for the
unique Lagrange multipliers are satisfied. Having identified the minimal cost, all
that remains is the show that the cost along the extremal is the same as this mini-
mal value. This is done by explicitly evaluating an integral.

The main goal of this section is to argue that the extremals are minimizers and
exhibit the relation between the two parameters used to identify the extremals and
the Lagrange multipliers used in the formula for the minimal cost. Not all details will
be given, and to simplify the presentation only the initial condition with t = 0 and
all cells empty is considered. The statement of the case of general initial conditions
is exactly analogous to Theorem 2.8 in [2], and any details that are omitted are
similar to ones appearing in [2]. In addition, we present only the case a ∈ (0,∞). In
this case it is simpler to work with an infinite dimensional version of the extremals.
This is analogous to what is called exponential case in [2]. The arguments for the
cases a = ∞ and a < 0 are analogous to that of a ∈ (0,∞). As noted above, the
case a = ∞ has already been considered in [2]. In the case a < 0, the extremals
satisfy ϕI = 0. Because of this the arguments are somewhat simpler than in the
case of a > 0, and it is analogous to the polynomial case of [2].

In the case of the empty initial condition the extremal can be identified as follows.
Let y ∈ SI be given. Then a family of solutions to the Euler-Lagrange equations for
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the problem of minimizing the cost subject to this terminal condition are

ϕ0(t) = CQa0(ρt) +
I[
k=0

(yk − CQak(ρT ))
�
1− t

T

�k
ϕi(t) =

ti

i!
(−1)iϕ(i)0 (t), 1 ≤ i ≤ I,

ϕI+(t) = 1−
I[
i=0

ϕi(t).

This is exactly analogous to the form found in [2] for the special case of a = ∞,
with the Poisson distribution P(t) in that case replaced by the family of probability
distributions Qa(t). It is useful to extend the definition of ϕi(t) to ϕi(t) = CQai (ρt)
for i > I, while maintaining the distinction between ϕI+(t) and ϕI(t).

The parameters ρ > 0 and C ≥ 0 are chosen so that the measure corresponding
to ϕi(T ) is a probability measure, and moreover one for which the number of balls
per cell at time T equals T. Specifically, ρ is chosen so that

ρT −SI
i=0 iQai (ρT )

1−SI
i=0Qai (ρT )

=
T −SI

i=0 iyi

1−SI
i=0 yi

holds, and then

C
.
=

1−SI
i=0 yi

1−SI
i=0Qai (ρT )

=
T −SI

i=0 iyi

ρT −SI
i=0 iQai (ρT )

.

Solutions to these equations exist for ρ ∈ (0,∞) and C ∈ [0,∞), and are unique.
To show that this is indeed a minimizing trajectory we relate the constants ρ

and C to the Lagrange multipliers appearing in the finite dimensional representation
(2.15). Recall that the minimizer to this problem takes the form

π0j (1, 0;Λ) = Qaj (T )eλ0−1+jµ−�j ,

with cj = 0 if j > I. Using the form of the minimizing trajectory, at time t = T

ϕj(T ) = yj , 0 ≤ j ≤ I,
ϕj(T ) = CQaj (ρT ), I < j.

Thus for all j > I we will want

Qaj (T )eλ0−1+jµ = CQaj (ρT ).

Since

Qaj (ρT )
Qaj (T )

=

�
−ρT
a+ρT

�j �
a+ρT
a

�−a
�
−T
a+T

�j �
a+T
a

�−a = ρj
�
a+ T

a+ ρT

�j � a+ T
a+ ρT

�a
,
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this suggests

µ = log ρ+ log

�
a+ T

a+ ρT

�
λ0 − 1 = a log

�
a+ T

a+ ρT

�
+ logC

and
ck = − log yk + logQak(ρT ) + logC

when k ≤ I. Hence the minimizing trajectory for a problem with a finite terminal
cost c will terminate at a point y with each yk > 0, an assumption we make for the
rest of this section. The argument when one or more yk = 0 can be handled by a
limiting argument. We remark in passing that similar considerations allow one to
explicitly identify the Lagrange multipliers for all initial conditions (x, t) that lie on
the extremal in terms of C, ρ, and the values yk.

To show that π0(1, 0;Λ) is the minimizing probability measure in (2.15) the
constraints (2.11) must be demonstrated. One constraint is that π0j (1, 0;Λ) be
a probability measure. Since the definitions of the Lagrange multipliers enforce
π0j (1, 0;Λ) = ϕj(T ), this follows from

SI
i=0 yi = 1− C +C

SI
i=0Qai (ρT ) and

∞[
j=0

ϕj(T ) =
I[
j=0

yj +
∞[

j=I+1

CQaj (ρT ) = 1− C +C = 1.

The only other constraint to check is the conservation condition:

∞[
j=0

jπ0j (1, 0;Λ) =
∞[
j=0

jQaj (T )eλ0−1+jµ−�j

=
∞[
j=0

jCQaj (ρT ) +
I[
j=0

jyj −
I[
j=0

jCQaj (ρT )

= CρT −
I[
j=0

jCQaj (ρT ) +
I[
j=0

jyj

= T −
I[
i=0

iyi +
I[
j=0

jyj

= T,

where the equations characterizing C and ρ are used for the fourth equality.
We have identified the optimal measure for the terminal cost c. To complete the

argument that ϕ is a minimizer we need only show that the cost along this trajectory
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equals

R
�
π0(1, 0;Λ) nQa(T )�
=

∞[
j=0

π0j (1, 0;Λ) log

#
π0j (1, 0;Λ)

Qaj (T )

$

=
∞[
j=0

Qaj (T )eλ0−1+jµ−�j log
�
eλ0−1+jµ−�j

�

=
I[
j=0

yj log

#
yj

Qaj (T )

$
+

∞[
j=I+1

CQaj (ρT ) log
#
CQaj (ρT )
Qaj (T )

$

=
∞[
j=0

ϕj(T ) log

#
ϕj(T )

Qaj (T )

$

=
∞[
j=0

ϕj(T ) log (ϕj(T ))−
∞[
j=0

ϕj(T ) log
�Qaj (T )�

=
∞[
j=0

ϕj(T ) log (ϕj(T ))

−
∞[
j=0

ϕj(T )

%
log

�
T

a

�j
+ log

#Tj−1
k=0(a+ k)

j!

$
+ log

�
a+ T

a

�−a−j&

=
∞[
j=0

ϕj(T ) log (ϕj(T ))− T log
�
T

a

�
+ (a+ T ) log

�
a+ T

a

�

−
∞[
j=0

ϕj(T ) log

#Tj−1
k=0(a+ k)

j!

$
.

The notion of a completely monotone function is useful here. Although it is
clear from the construction of the Lagrange multipliers that ϕj(T ) is a probability
measure, the same cannot be said yet for ϕj(t). A monotone function γ is completely
monotone on [0, T ] if it is infinitely differentiable on [0, T ] and if for all t ∈ [0, T ]
and i ≥ 0

(−1)iγ(i)(t) ≥ 0.
The same argument as [2, p. 2794] shows that ϕ0(t) is completely monotone on
[0, T ], and hence for all t ∈ [0, T ] and i ≥ 0, ϕi(t) ≥ 0. From the explicit formula for

ϕ0(t) we actually have (−1)iϕ(i)0 (t) > 0 for t ∈ (0, T ). It is also easy to show that for
all t ∈ [0, T ] and i ≥ 0, ϕi(t) can be interpreted as the ith term in the Taylor series
expansion of ϕ0(0) about t, and so for each t {ϕi(t), i = 0, 1, . . .} is a probability
measure on {0, 1, . . .}.

To evaluate the cost ] T

0
R (θ nρ(t,ϕ(t))) dt,
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it is convenient to work, as in [2], with the cumulative occupancy functions

ψj(t) =

j[
i=0

ϕi(t).

The dynamics then take the form ψ
(1)
j (t) = −θj(t), and so with the convention

ψ−1(t) = 0 the cost can be expressed] T

0

%
I[
i=0

−ψ(1)i (t) log
#

−ψ(1)i (t)
a+i
a+t (ψi(t)− ψi−1(t))

$

+
�
1 + ψ

(1)
0 (t) + · · ·+ ψ

(1)
I (t)

�
log

#
1 + ψ

(1)
0 (t) + · · ·+ ψ

(1)
I (t)

a
a+t (1− ψI(t)) +

1
a+t

S∞
k=I+1 k (ψk(t)− ψk−1(t))

$&
dt.

We have

−ψ(1)i (t) = −
i[

k=0

ϕ
(1)
i (t)

= −
i[

k=0

(−t)k
k!

ψ
(k+1)
0 (t) +

i[
k=1

(−t)k−1
(k − 1)!ψ

(k)
0 (t)

= −(−t)
i

i!
ψ
(i+1)
0 (t),

and so
−ψ(1)i (t)
ϕi(t)

=
− (−t)ii! ψ

(i+1)
0 (t)

(−t)i
i! ψ

(i)
0 (t)

=
−ψ(i+1)0 (t)

ψ
(i)
0 (t)

.

Since for i > I

−ψ(1)i (t)
a+i
a+t (ψi(t)− ψi−1(t))

=
a+ t

a+ i

−ϕ(i+1)0 (t)

ϕ
(i)
0 (t)

=
a+ t

a+ i

Qai+1(ρt)(i+ 1)
Qai (ρt)t

=
a+ t

a+ i

(−ρt)(−a− i)
(a+ ρt)t

=
(a+ t)ρ

a+ ρt
.

and

1 + ψ
(1)
0 (t) + · · ·+ ψ

(1)
I (t)

a
a+t (1− ψI(t)) +

1
a+t

S∞
k=I+1 k (ψk(t)− ψk−1(t))

=

S∞
i=I+1− (−t)

i

i! ϕ
(i+1)
0 (t)

a
a+t

�S∞
i=I+1

(−t)i
i! ϕ

(i)
0 (t)

�
+ 1

a+t

S∞
i=I+1 i

(−t)i
i! ϕ

(i)
0 (t)

=

S∞
i=I+1− (−t)

i

i! ϕ
(i+1)
0 (t)

a+i
a+t

�S∞
i=I+1

(−t)i
i! ϕ

(i)
0 (t)

� ,
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we can write the integral as] T

0

∞[
i=0

−ψ(1)i (t) log
#

−ψ(1)i (t)
a+i
a+t (ψi(t)− ψi−1(t))

$
dt.

At several places below we will need the existence of a dominating function to justify
the interchange of summation and integration. A suitable function can be found
using the same calculations as those used to establish (2.16). Also, this dominating
function will work only on closed subintervals of (0, T ), and so a careful argument
will first evaluate the integral on [ε, T − ε] and then use monotone convergence to
take the limit ε ↓ 0.

We evaluate the integral by the following calculation, each line of which is ex-
plained below:] T

0

∞[
i=0

−ψ(1)i (t) log
#
a+ t

a+ i

−ψ(i+1)0 (t)

ψ
(i)
0 (t)

$
dt

=

] T

0

∞[
i=0

�
−ψ(1)i (t) log

���ψ(i+1)0 (t)
���+ ψ

(1)
i (t) log

���ψ(i)0 (t)���− ψ
(1)
i (t) log (a+ i)

�
dt

+

] T

0

# ∞[
i=0

−ψ(1)i (t)
$
log (a+ t) dt

=

] T

0

∞[
i=0

k�
ψ
(1)
i (t)− ψ

(1)
i−1(t)

�
log
���ψ(i)0 (t)���− ψ

(1)
i (t) log (a+ i)

l
dt

+

] T

0
log (a+ t) dt

=
∞[
i=0

#k
ϕi(t) log

���ψ(i)0 (t)���lT
0
+

] T

0

# ∞[
i=0

−ψ(1)i (t)
$
dt+

∞[
i=0

[ψi(t)]
T
0 log(a+ i)

$
+(a+ T ) log(a+ T )− (a+ T )− a log a+ a

=
∞[
i=0

#k
ϕi(T ) log

���ϕ(i)0 (T )���− ϕi(0) log
���ϕ(i)0 (0)���lT

0
+ log(a+ i)

#
i[

k=0

ϕi(T )−
i[

k=0

ϕi(0)

$$
+T + (a+ T ) log(a+ T )− (a+ T )− a log a+ a

=
∞[
i=0

#
ϕi(T ) log

�
ϕi(T )i!/T

i
�− log(a+ i)# ∞[

k=i+1

ϕk(T )

$$
+(a+ T ) log(a+ T )− a log a

=
∞[
i=0

#
ϕi(T ) logϕi(T ) +

∞[
i=0

ϕi(T ) log (i!)− ϕi(T ) log

#
i−1\
k=0

(a+ k)

$$
−T logT + (a+ T ) log(a+ T )− a log a

=
∞[
i=0

ϕi(T ) logϕi(T ) +
∞[
i=0

ϕi(T ) log

#
i!Ti−1

k=0(a+ k)

$
−T logT + (a+ T ) log(a+ T )− a log a.
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The first line separates the a + t term in the logarithm. The second equality uses

the convention ψ−1(t) = 0 and that
S∞
i=0−ψ(1)i (t) = 1 (all balls go into some

cell). The third line uses integration by parts and the fourth uses the definition
of the cumulative occupancies. The fifth line uses the definition of ϕi in terms of
derivatives of ϕ0, and the sixth equality uses summation by parts. Since

−T log
�
T

a

�
+ (a+ T ) log

�
a+ T

a

�
= −T log T + (a+ T ) log(a+ T )− a log a,

the cost along this trajectory equals the minimum, and the argument is complete.

3 Allocation Models with Balls of Different Color

In this section we extend the techniques to the case of allocation models where the
balls are of more than one type. To keep the notation simple, we actually consider
just two colors, the extension to the more general case being straightforward. An-
other simplification is that we consider only MB statistics. The interested reader can
combine the methods from this section and the last to treat more general statistical
models.

3.1 Coloration Process

We construct an allocation model with colored balls as follows. Balls are thrown
into one of n cells sequentially. The throwing process is modeled by a collection
of independent and identically distributed (iid) random variables, each uniformly
distributed on the set {1, . . . , n}, with each value of the set corresponding to an
cell. There is also a coloration process. At each discrete time a ball is assigned
color Y nl ∈ {1, 2}, and then placed into the cell determined by the throwing process.
These two processes are independent.

The occupancy process in this case is defined as follows. The natural state space
is

SI,J
.
=

x ∈ RI+2 ×RJ+2 : xi,j ≥ 0, 0 ≤ i ≤ I + 1, 0 ≤ j ≤ J + 1,
I+1[
i=0

J+1[
j=0

xi,j = 1

 .
If i ∈ {0, . . . , I} and j ∈ {0, . . . , J}, then Xn

i,j(l/n) is the fraction of cells containing
exactly i color-1 and j color-2 balls when l balls have been thrown. In an analogous
fashion Xn

I+,j(l/n),X
n
i,J+(l/n) and X

n
I+,J+(l/n) are defined. By definition X

n
0,0(0)

.
=

1, and Xn
i,j(0)

.
= 0 for all other values of (i, j).

To describe the large deviation asymptotics of these allocation processes we
must specify those of the coloration processes. Cumulative coloration processes
{rn, n ∈ N} are defined for t = l/n by

rn1 (l/n)
.
=
1

n

l[
k=1

1{Y nk =1}, r
n
2 (l/n)

.
=
1

n

l[
k=1

1{Y nk =2}.
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We will assume that these processes satisfy a large deviations principle with a rate
function of the form J(φ) =

U T
0 c(φ̇(s))ds. Thus c(φ̇(s)) is a measure of the local (in

time) log likelihood that a fraction φ̇i(s) of the balls are color i. A mild technical as-
sumption that is needed to prove a large deviations result for the occupancy process
is that c(a) = 0 for some point a with ai > 0, i = 1, 2. Since c is a rate function,
there is at least one probability vector a at which c(a) = 0. The assumption that
this occurs at a point where both components are positive is very mild, and means
simply that the LLN limit cannot concentrate exclusively on one color.

Examples of coloration processes which satisfy these properties are deterministic,
iid and Markovian. In the iid case colors are selected by an iid sequence of random
variables. In the Markov case the color is chosen by a finite state ergodic Markov
chain. The so-called deterministic case seeks to achieve a deterministic fraction ak
of color k, with ak ∈ (0, 1). This can be done as follows. If Nk

l−1 balls of color
k have been thrown in the first l − 1 throws (with N1

l−1 + N
2
l−1 = l − 1), and if

N1
l−1/n ≤ a1l/n, then we color the lth ball 1, and otherwise color it 2.
The specific form for c in all these cases is spelled out in [3]. For reasons to be

explained below, the focus in this paper will be on the iid and deterministic cases,
where c(ρ) equals R(ρ na) and∞ ·1{a}c(ρ), repsectively. Under a suitable restriction
needed to ensure convexity that is also described below, the same methods can be
applied to the Markovian case as well.

3.2 Variational Problem and PDE

For this problem the feasible domain is

D .
=

(x, t) ∈ SI,J × [0, T ) :
I[
i=0

xi,J+1 +
J[
j=0

xI+1,j + xI+1,J+1 > 0 and

t >
I+1[
i=0

J+1[
j=0

xi,j or
I[
i=0

xi,J+1 +
J[
j=0

xI+1,j + xI+1,J+1 = 0 and t =
I[
i=0

J[
j=0

xi,j

 .
We next describe the large deviations variational problem. Recall that SI,J are

the set of all probability measures on {0, I + 1} × {0, J + 1}, which can also be
interpreted as real (I + 2)× (J + 2) matrices. For α ∈ SI,J define the linear maps

M1
i,j [α] = αi−1,j1{i≥1} − αi,j1{i≤I},M2

i,j [α] = αi,j−11{j≥1} − αi,j1{j≤J}.

The rate function for the coloration over an interval [t, T ] is assumed to be of the

form
U T
t c(ρ)ds, where ρ(s) = (ρ1(s), ρ2(s)) are the colored fractions at time s. The

local (in time) and total coloration fractions satisfy qk =
U T
t ρk(s)ds/[T − t], and

for a trajectory of the form (ρ1(s), ρ2(s)) = (q1, q2), the cost is of course [T − t]c(q).
The rate function for the occupancy process on path space is then

I(x, t;ϕ) = inf
θ,ρ

] T

t

�
ρ1R(θ

1 nϕ) + ρ2R(θ
2 nϕ) + c(ρ)� ds,
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where the infimum is over all θ, ρ such that

ϕ(u)− ϕ(t) =

] u

t

�
ρ1M

1[θ1] + ρ2M
2[θ2]

�
ds.

For a terminal cost F we consider

V (x, t) = inf
ϕ∈C([t,T ],SI,J ),ϕ(t)=x

{I(x, t;ϕ) + F (ϕ(T ))} .

Then V should be a weak-sense solution to

Wt +H(Wx, x, t) = 0

and the terminal condition, where

H(p, x, t) = inf
ρ,θ1,θ2

�

p, ρ1M

1[θ1] + ρ2M
2[θ2]

�
+ ρ1R(θ

1 nx) + ρ2R(θ
2 nx) + c(ρ)� .

If b(γ) is the Legendre transform b(γ) = supρ [kγ, ρl − c(ρ)], then we can also write

H(p, x, t) = − sup
ρ

− [
m=1,2

ρm

�
inf
θm
[kp,Mm[θm]l+R(θm nx)]

�
− c(ρ)


= −b

�
− inf

θ1

�

p,M1[θ1]

�
+R(θ1 nx)� ,− inf

θ2

�

p,M2[θ2]

�
+R(θ2 nx)�� .

The variational formula for exponential integrals in terms of relative entropy [1,
Proposition 1.4.2] asserts that

inf
θ1

�

p,M1

�
θ1
��
+R(θ1 nx)� = inf

θ1

 [
i,j,i≥1

pi,jθ
1
i−1,j −

[
i,j,i≤I

pi,jθ
1
i,j +R(θ

1 nx)


= inf
θ1

 [
i,j,i≤I

(pi+1,j − pi,j)θ1i,j +R(θ1 nx)


= − log
 [
i,j,i≤I

e−(pi+1,j−pi,j)xi,j +
[

i,j,i=I+1

xi,j

 .
Using the analogous formula for m = 2, one obtains

H(p, x, t) = −b
log

 [
i,j,i≤I

e−(pi+1,j−pi,j)xi,j +
[

i,j,i=I+1

xi,j

 ,
log

 [
i,j,j≤J

e−(pi,j+1−pi,j)xi,j +
[

i,j,j=J+1

xi,j

 . (3.1)
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3.3 Explicit Solution

Let πi,j(r1, r2) denote the probability of throwing rm additional balls of color m,
m = 1, 2, into cells of category (i, j), and let q = (q1, q2) be the fraction of balls of
colors (1, 2). For x ∈ SI,J , we say that (π, q) ∈ F(x, t; y, T ) if for all i, j

xi,j

∞[
r1,r2=0

πi,j(r1, r2) = xi,j ,
I+1[
i=0

J+1[
j=0

xi,j

∞[
r1,r2=0

rmπi,j(r1, r2) = qm(T − t)

for m = 1, 2 and

yk,l =
k[
i=0

l[
j=0

xi,jπi,j(k − i, l − j)

yI+1,l =
∞[
r=0

I+1[
i=0

l[
j=0

xi,jπi,j(I + 1− i+ r, l − j)

yk,J+1 =
∞[
r=0

k[
i=0

J+1[
j=0

xi,jπi,j(k − i, J + 1− j + r)

yl+1,J+1 =
∞[
s=0

∞[
r=0

I+1[
i=0

J+1[
j=0

xi,jπi,j(I + 1− i+ s, J + 1− j + r).

We also denote y by x × π. If the coloration turns out to be (q1, q2), then there
are qm(T − t)n balls of color m thrown, and the law of large numbers limit for the
empirical fraction of cells of category (i, j) is Pi(q1(T − t))Pj(q2(T − t)).

The same sort of argument as in Section 2.2 then suggests that the explicit form
for the solution to the variational problem should be

min
(π,q)∈F(x,t;y,T )


I+1[
i=0

J+1[
j=0

xi,jR (πi,j nP(q1(T − t))×P(q2(T − t))) + (T − t)c(q)
 .

However, an interesting feature of the case with color is that the quantity being
minimized in this formula is not always convex. In a previous paper [3], a useful
assumption that guaranteed the convexity of the large deviation rate on path space
was that c(ρ)+h(ρ) be convex, where h(ρ) is the entropy function h(ρ)

.
= −ρ1 log ρ1−

ρ2 log ρ2. We will show that this same condition, not surprisingly, gives convexity
here as well. Let a be the point with ai > 0, i = 1, 2, for which c(a) = 0. Then we
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can write, under the constraint that relates πi,j and qm,

I+1[
i=0

J+1[
j=0

xi,jR (πi,j nP(q1(T − t))×P(q2(T − t))) + (T − t)c(q)

=
I+1[
i=0

J+1[
j=0

xi,j

∞[
k=0

∞[
l=0

πi,j(k, l) log

�
πi,j(k, l)

Pk(a1(T − t))Pl(a2(T − t))
�

+
I+1[
i=0

J+1[
j=0

xi,j

∞[
k=0

∞[
l=0

πi,j(k, l)

%
(T − t)c(q)− log

#�
q1
a1

�k � q2
a2

�l$&

=
I+1[
i=0

J+1[
j=0

xi,jR (πi,j nP(a1(T − t))×P(a2(T − t))) + (T − t) [c(q)−R(q na)] .

The mapping q → [c(q)−R(q na)] is convex if and only if c(q)+h(q) is convex, and
so convexity of c(q) + h(q) is sufficient for the minimization problem to be convex
in (πi,j , qm). Note that in the deterministic case this condition holds with strict
convexity, and that in the iid case c(q) + h(q) is convex but never strictly convex
(it is in fact always linear in q). Hence this is in a certain sense a borderline case,
and one for which there may be nonuniqueness of minimizers. In the case of Markov
coloring the condition may or may not hold—see [3] for further details.

This alternative rewriting of the objective function also has a practical benefit,
in that the quantity to be minimized is now the sum of a convex function of π and
a convex function of q, with no “cross terms.” As a consequence, the formulas for
πi,j and qm also separate, and hence can be solved for explicitly in terms of the
multipliers.

Having restricted already to the case where c(q)+h(q) is convex, we now make a
final restriction. To parallel the very explicit computations of the single color model,
we need a specific form for c, and in particular a form that allows us to solve for the
minimizers in terms of multipliers. This can be done when the rate function for the
coloration has a representation in terms of relative entropy, which is the case for all
the models introduced previously. The particular form we choose is c(q) = bR(q na),
where b ∈ (1,∞). The limit b ↑ ∞ gives the deterministic coloration with parameters
a1 and a2, and the limit b ↓ 1 gives the iid coloration with parameters a1 and a2.

Define
J (x, t; y) .= inf

ϕ∈C([t,T ],SI,J)
ϕ(t)=x,ϕ(T )=y

I(x, t;ϕ).

Theorem 3.1. Consider the allocation problem with either the deterministic or
iid coloration process with parameters a1 > 0 and a2 > 0, an initial condition
(x, t) ∈ D, and a feasible terminal condition y. Then the quantity J (x, t; y) has the
representation

min
(π,q)∈F(x,t;y,T )


I+1[
i=0

J+1[
j=0

xi,jR (πi,j nP(a1(T − t))×P(a2(T − t))) + (T − t)(b− 1)R(q na)
 .
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Proof. We will prove the representation for b ∈ (1,∞). Taking limits and using
monotonicity in b will then establish the corresponding result for b = 1 and b =∞.
The same line of argument as in the single color case is followed. Hence we consider
linear terminal conditions F (y) = ky, cl with c = ci,j , i = 0, . . . , I+1, j = 0, . . . , J+1,
and define

U(x, t) = inf

+
I+1[
i=0

J+1[
j=0

xi,jR (πi,j nP(a1(T − t))×P(a2(T − t)))

+ (T − t)(b− 1)R(q na) + kc, x× πl
,
.

The infimum is over F(x, t, T ), which is defined to be the set of all collections
(πi,j , qm) such that

I+1[
i=0

J+1[
j=0

xi,j

∞[
r1=0

∞[
r2=0

rmπi,j(r1, r2) = qm(T − t),m = 1, 2

and
qm ≥ 0,m = 1, 2, q1 + q2 = 1.

To study this problem define

f(x, t;π, q)

.
=

I+1[
i=0

J+1[
j=0

xi,jR (πi,j nP(a1(T − t))×P(a2(T − t))) + (T − t)(b− 1)R(q na) + kc, x× πl ,

introduce Lagrange multipliers Λ = (λi,j , i = 0, . . . , I + 1, j = 0, . . . , J + 1;µm,m =
1, 2; θ), and define

L(x, t;Λ,π, q)
.
= f(x, t;π, q) +

I+1[
i=0

J+1[
j=0

λi,jxi,j

#
1−

∞[
k=0

∞[
l=0

πi,j(k, l)

$

+
[
m=1,2

µm

qm(T − t)− I+1[
i=0

J+1[
j=0

xi,j

∞[
r1=0

∞[
r2=0

rmπi,j(r1, r2)


+ θ(1− q1 − q2).

Analogously to the single color case,

πi,j(k, l;x, t;Λ) = Pk(a1(T − t))Pl(a2(T − t))eλi,j−1+kµ1+lµ2−�i+k,j+l .

The equation for q is

(T − t)(b− 1)
�
log

�
qm
am

�
+ 1

�
+ µm(T − t)− θ = 0,
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so that
qm(x, t;Λ) = ame

− µm
b−1 e

θ
(T−t)(b−1) e−1.

For i = 0, . . . , I, I + 1, j = 0, . . . , J, J + 1 and m = 1, 2 let

Gi,j(x, t;Λ) =

#
1−

∞[
k=0

∞[
l=0

πi,j(k, l;x, t;Λ)

$
,

Gm(x, t;Λ) =

qm(x, t;Λ)(T − t)− I+1[
i=0

J+1[
j=0

xi,j

∞[
k=0

∞[
l=0

rmπi,j(k, l;x, t;Λ)

 ,
G3(x, t;Λ) = (1− q1(x, t;Λ)− q2(x, t;Λ)).

When discussing uniqueness of the multipliers we must work with a matrix indexed
by the subscripts of these functions, and the particular ordering of the i, j as sub-
scripts is unimportant.

We next present three lemmas that are analogues of ones proved in the case of
a single color. Since the proofs of the first two are also direct analogues they are
omitted.

Lemma 3.2 (General properties). For any (x, t) ∈ D, F(x, t;T ) is nonempty,
minimizing measures π∗ exist, and if xi,j > 0 then π∗i,j(k, l) > 0 for all k and l.

Lemma 3.3 (Characterization of the minimizer). For any (x, t) ∈ D there
exists Λ ∈ R(I+2)×(J+2)+3 so that G(x, t;Λ) = 0, and πi,j(k, l;x, t;Λ), qm(x, t;Λ) is
a minimizer in the definition of U(x, t).

Lemma 3.4 (Uniqueness of characterization). For (x, t) ∈ D, there is only one
Λ ∈ R(I+2)×(J+2)+3 such that G(x, t,Λ) = 0.
Proof. We have 

∂πi,j(k,l;x,t;Λ)
∂λi,j

= πi,j(k, l;x, t;Λ)
∂πi,j(k,l;x,t;Λ)

∂µ1
= kπi,j(k, l;x, t;Λ)

∂πi,j(k,l;x,t;Λ)
∂µ2

= lπi,j(k, l;x, t;Λ)
∂qm(x,t;Λ)

∂µm
= − 1

b−1qm(x, t;Λ)
∂qm(x,t;Λ)

∂θ = 1
(T−t)(b−1)qm(x, t;Λ),

and all other partial derivatives are zero. As in the single color case it is enough
to show the negative definiteness of DΛG. Using a suitable dominating function to
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justify the interchange of differentiation and summation and the definitions

αi,j =
∞[
k,l=0

πi,j(k, l;x, t;Λ)

T i,jm =
∞[

r1,r2=0

rmπi,j(r1, r2;x, t;Λ)

C1,1 =
I+1[
i=0

J+1[
j=0

xi,j

∞[
r1,r2=0

r21πi,j(r1, r2;x, t;Λ)

C2,2 =
I+1[
i=0

J+1[
j=0

xi,j

∞[
r1,r2=0

r22πi,j(r1, r2;x, t;Λ)

C1,2 =
I+1[
i=0

J+1[
j=0

xi,j

∞[
r1,r2=0

r1r2πi,j(r1, r2;x, t;Λ),

DΛG equals [with qm = qm(x, t;Λ)]

−α0,0 · · · 0 −T 0,01 −T 0,02 0
...

. . .
...

...
...

...

0 · · · −αI+1,J+1 −T I+1,j+11 −T I+1,j+12 0

−x0,0T 0,01 · · · −xI+1,J+1T I+1,J+11 −T−tb−1 q1 − C1,1 −C1,2 − 1
b−1q1

−x0,0T 0,02 · · · −xI+1,J+1T I+1,J+12 −C1,2 −T−tb−1 q2 −C2,2 − 1
b−1q2

0 · · · 0 1
b−1q1

1
b−1q2 − q1+q2

(T−t)(b−1)


.

Since diagonalizing all save the lower right 3×3-submatrix produces strictly negative
values on the diagonal, we need only check the negative definiteness of

S
i,j

xi,j
αi,j
(T i,j1 )

2 − T−t
b−1 q1 − C1,1

S
i,j

xi,j
αi,j
T i,j1 T

i,j
2 − C1,2 − 1

b−1q1S
i,j

xi,j
αi,j
T i,j1 T

i,j
2 − C1,2

S
i,j

xi,j
αi,j
(T i,j2 )

2 − T−t
b−1 q2 − C2,2 − 1

b−1q2
1
b−1q1

1
b−1q2 − q1+q2

(T−t)(b−1)


Since  −T−tb−1 q1 0 − 1

b−1q1
0 −T−tb−1 q2 − 1

b−1q2
1
b−1q1

1
b−1q2 − q1+q2

(T−t)(b−1)


is obviously negative definite, we need only check the 2× 2 matrix# S

i,j
xi,j
αi,j
(T i,j1 )

2 − C1,1
S
i,j

xi,j
αi,j
T i,j1 T

i,j
2 − C1,2S

i,j
xi,j
αi,j
T i,j1 T

i,j
2 −C1,2

S
i,j

xi,j
αi,j
(T i,j2 )

2 −C2,2

$
.

However, letting πi,j(r1, r2) = πi,j(r1, r2;x, t;Λ) and pre- and post-multiplying by
the nonzero vector (z1, z2) produces[
i,j

xi,j
αi,j

#[
r1,r2

(z1r1 + z2r2)πi,j(r1, r2)−
[
r1,r2

(z1r1 + z2r2)
2πi,j(r1, r2) ·

[
r1,r2

πi,j(r1, r2)

$
≤ 0.
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Thus the entire matrix is negative definite.

Since we have restricted to the case of MB there is no analogue of the non-
smooth function τ(x, t), and hence the existence of a smooth extension of U to a
neighborhood of D follows directly from the implicit function theorem. The next
result expresses the derivatives in terms of the multipliers.

Theorem 3.5. Fix (x, t) ∈ D, and let Λ∗ be the associated Lagrange multiplier.
Then

Dxi,jU(x, t) = (λ
∗
i,j − 1)

and

DtU(x, t) = (b− 1)− θ∗

(T − t) .

Proof. With
H(x, t;Λ)

.
= L(x, t;Λ,πi,j(·, x, t;Λ), qm(x, t;Λ))

we can write
U(x, t) = H(x, t;Λ(x, t)),

where Λ(x, t) is the unique solution to the constraint equations. Then

Dxi,jU(x, t) = Dxi,jH(x, t;Λ
∗) +DΛH(x, t;Λ

∗)Dxi,jΛ(x, t).

As in the single color case DΛH(x, t;Λ
∗) = 0, and so Dxi,jU(x, t) = Dxi,jH(x, t;Λ∗),

and an analogous argument also gives DtU(x, t) = DtH(x, t;Λ
∗). Note that both

πi,j(k, l;x, t;Λ) and qm(x, t;Λ) are actually independent of x, and hence can be writ-
ten πi,j(k, l; t;Λ) and qm(t;Λ). Keeping in mind the t dependence but temporarily
suppressing both t and Λ∗ in the notation, we will use

(T − t)(b− 1)R(q na) = −(T − t) [q1µ∗1 + q2µ∗2] + [θ∗ − (T − t)(b− 1)](q1 + q2).

The quantity to be differentiated is thus

I+1[
i=0

J+1[
j=0

xi,j

∞[
k=0

∞[
l=0

�
λ∗i,j − 1 + kµ∗1 + lµ∗2

�
πi,j(k, l)− (T − t) [q1µ∗1 + q2µ∗2]

+[θ∗ − (T − t)(b− 1)](q1 + q2)

+
I+1[
i=0

J+1[
j=0

λ∗i,jxi,j

#
1−

∞[
k=0

∞[
l=0

πi,j(k, l)

$

+
[
m=1,2

µ∗m

qm(T − t)− I+1[
i=0

J+1[
j=0

xi,j

∞[
r1=0

∞[
r2=0

rmπi,j(r1, r2)


+θ∗(1− q1 − q2)

= −
I+1[
i=0

J+1[
j=0

xi,j

∞[
k=0

∞[
l=0

πi,j(k, l)− (T − t)(b− 1)(q1 + q2) +
I+1[
i=0

J+1[
j=0

λ∗i,jxi,j + θ∗.
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Since

∂πi,j(k, l; t;Λ)

∂t
= eλi,j−1+kµ1+lµ2−�i+k,j+l

∂Pk(a1(T − t))Pl(a2(T − t))
∂t

=
eλi,j−1+kµ1+lµ2−�i+k,j+l

k!l!

∂e−(T−t)ak1(T − t)kal2(T − t)l
∂t

=

�
1− k

T − t −
l

T − t
�
πi,j(k, l; t;Λ)

and
∂qm(t;Λ)

∂t
=

�
θ

(T − t)2(b− 1)
�
qm(t;Λ),

it follows that
Dxi,jU(x, t) = (λ

∗
i,j − 1)

and

DtU(x, t) = −
I+1[
i=0

J+1[
j=0

xi,j

∞[
k=0

∞[
l=0

�
1− k

T − t −
l

T − t
�
πi,j(k, l)

+(b− 1) (q1 + q2)− θ∗

(T − t) (q1 + q2)

= −1 + q1 + q2 + (b− 1)− θ∗

(T − t)
= (b− 1)− θ∗

(T − t) .

For the particular rate function of interest here,

b(γ) = sup [kγ, ql − bR(q na)]
= −b inf

�
−1
b
kγ, ql+R(q na)

�
= b log

�
e
γ1
b a1 + e

γ2
b a2

�
.

Hence by (3.1), the PDE to be satisfied by U takes the form

Wt − b log


 [
i,j,i≤I

e−(Wxi+1,j−Wxi,j )xi,j +
[

i,j,i=I+1

xi,j

 1
b

a1

+

 [
i,j,j≤J

e−(Wxi,j+1−Wxi,j )xi,j +
[

i,j,j=J+1

xi,j

 1
b

a2

 = 0. (3.2)

Theorem 3.6. U satisfies (3.2) on D.
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Proof. By Theorem 3.5, this will be true if

(b− 1)− θ∗

(T − t) − b log


 [
i,j,i≤I

e−(λ
∗
i+1,j−λ∗i,j)xi,j +

[
i,j,i=I+1

xi,j

 1
b

a1

+

 [
i,j,j≤J

e−(λ
∗
i,j+1−λ∗i,j)xi,j +

[
i,j,j=J+1

xi,j

 1
b

a2

 = 0. (3.3)

For i ≤ I
πi+1,j(k, l)

πi,j(k + 1, l)
=
eλi+1,j−λi,je−µ1(k + 1)

a1(T − t) .

Summing on k and l gives

eλi,j−λi+1,j =
e−µ1

a1(T − t)
[
r1,r2

r1πi,j(r1, r2),

and the analogous formula

eλi,j−λi,j+1 =
e−µ2

a2(T − t)
[
r1,r2

r2πi,j(r1, r2)

applies for j ≤ J . We also have

1 =
e−µ2

a2(T − t)
[
r1,r2

r2πI+1,j(r1, r2) =
e−µ2

a2(T − t)
[
r1,r2

r2πi,J+1(r1, r2)

if j ≤ J + 1 or i ≤ I + 1. Hence[
i,j,i≤I

e−(λ
∗
i+1,j−λ∗i,j)xi,j +

[
i,j,i=I+1

xi,j = e
−µ∗1 q1

a1
,

[
i,j,j≤J

e−(λ
∗
i,j+1−λ∗i,j)xi,j +

[
i,j,j=J+1

xi,j = e
−µ∗2 q2

a2
.

Now q1 + q2 = 1 implies

0 = log (q1(t;Λ) + q2(t;Λ))

= log
�
a1e

− µ1
b−1 e

θ
(T−t)(b−1)−1 + a2e−

µ2
b−1 e

θ
(T−t)(b−1)−1

�
= log

�
a1e

− µ1
b−1 + a2e

− µ2
b−1
�
+

θ

(T − t)(b− 1) − 1.
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The left hand side of (3.3) becomes

(b− 1)− θ∗

(T − t) − b log
��
e−µ

∗
1q1/a1

� 1
b
a1 +

�
e−µ

∗
2q2/a2

� 1
b
a2

�
= (b− 1)− θ∗

(T − t) − b log
#�

e−µ
∗
1e−

µ∗1
b−1 e

θ∗
(T−t)(b−1)−1

� 1
b

a1 +

�
e−µ

∗
2e−

µ∗2
b−1 e

θ∗
(T−t)(b−1)−1

� 1
b

a2

$

= −(b− 1) + θ∗

(T − t) − b
%
log

#�
e−

bµ∗1
b−1

� 1
b

a1 +

�
e−

bµ∗2
b−1

� 1
b

a2

$
+

θ∗

b(T − t)(b− 1) −
1

b

&

= −b+ bθ∗

(T − t)(b− 1) −
bθ∗

(T − t)(b− 1) + b
= 0,

and the theorem is proved.

3.4 Minimizing Trajectories

We end this section by stating without proof the form of the minimizing trajectories.
As in the case of a single color we consider only the empty initial condition. In
contrast with that case, here the minimizing q must be determined first via Lagrange
multipliers. Once q is given, we define

ϕ0,0(t1, t2)

.
= CP0(ρq1t1)P0(ρq2t2) +

I[
k=0

J[
l=0

(yk,l − CPk(ρq1T )Pl(ρq2T ))
�
1− t1

T

�k �
1− t2

T

�l
and

ϕi,j(t1, t2)
.
=
(−t1)i
i!

(−t2)j
j!

ϕ
(i,j)
0,0 (t1, t2).

In terms of these functions we set

ϕi,j(t)
.
= ϕi,j(t, t).

and for i ≤ I and j ≤ J

ϕI+,j(t) =
∞[

i=I+1

ϕi,j(t), ϕi,J+(t) =
∞[

j=J+1

ϕi,j(t), ϕI+J+(t) =
∞[

i=I+1

∞[
j=J+1

ϕi,j(t).

With q determined via Lagrange multipliers, the parameters ρ > 0 and C ≥ 0 are
chosen so that

ρT −SI
i=0

SJ
j=0(i+ j)Pi(ρq1T )Pj(ρq2T )

1−SI
i=0

SJ
j=0 Pi(ρq1T )Pj(ρq2T )

=
T −SI

i=0

SJ
j=0(i+ j)yi,j

1−SI
i=0

SJ
j=0 yi,j

and

C
.
=

1−SI
i=0

SJ
j=0 yi,j

1−SI
i=0

SJ
j=0 Pi(ρq1T )Pj(ρq2T )

=
T −SI

i=0

SJ
j=0(i+ j)yi,j

ρT −SI
i=0

SJ
j=0(i+ j)Pi(ρq1T )Pj(ρq2T )

.
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The proof that these trajectories achieve the minimal cost parallels that of the single
color case, with an appropriate modification of the notion of completely monotone
that is suitable for functions of two independent variables.
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